L

PHYSICA &

ELSEVIER Physica D 159 (2001) 155-179

www.elsevier.com/locate/physd

On the stability of periodic orbits of high dimensional
autonomous Hamiltonian systems

Ch. Skoko&P

2 Research Center for Astronomy, Academy of Athens, 14 Anagnostopoulou Street, GR-10673 Athens, Greece
b Department of Physics, University of Athens, Panepistimiopolis, GR-15784 Zografos, Greece

Received 22 January 2001; received in revised form 3 September 2001; accepted 10 September 2001
Communicated by E. Ott

This work is dedicated to the memory of Dr. C. Polymilis who suggested the subject of the present paper;
unfortunately he passed away before this work was completed.

Abstract

We study the stability of periodic orbits of autonomous Hamiltonian systemswvitti degrees of freedom or equivalently
of 2N-dimensional symplectic maps, witti > 1. We classify the different stability types, introducing a new terminology
which is perfectly suited for systems with many degrees of freedom, since it clearly reflects the configuration of the eigenvalues
of the corresponding monodromy matrix, on the complex plane. The different stability types correspond to different regions
of the N-dimensional parameter spase defined by the coefficients of the characteristic polynomial of the monodromy
matrix. All the possible direct transitions between different stability types are classified, and the corresponding transition
hypersurface i is determined. The dimension of the transition hypersurface is an indicator of how probable to happen is the
corresponding transition. As an application of the general results we consider the well-known cases of Hamiltonian systems
with two and three degrees of freedom. We also describe in detail the different stability regions in the three-dimensional
parameter spacg of a Hamiltonian system with four degrees of freedom or equivalently of a six-dimensional symplectic
map. © 2001 Elsevier Science B.V. All rights reserved.

PACS 03.204+i; 05.45+b; 95.10.Ce
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1. Introduction

The stability of periodic orbits of high dimensional autonomous Hamiltonian systems (with more than three
degrees of freedom) and equivalently of high dimensional symplectic maps is a significant problem in nonlinear
dynamics having a variety of applications ranging from celestial mechanics (e.g. [1-4]) to chemical physics (e.g.
[5-7]). The problem has been studied in the past by a number of authors, and important results have been given
for systems with two and three degrees of freedom [8,9]. Due to the complexity of the problem it is inevitable to
restrict attention to low dimensions. Nevertheless, some work has been also done on systems with many degrees of
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freedom [10-12], but a general theory in dimensions higher than three is still lacking. Most of the activity so far was
focused on the derivation of stability boundaries for symplectic maps [10,12]. Howard and MacKay [10], based on
the observation that the introduction of the stability indices reduces the characteristic polynomial which gives the
eigenvalues of the monodromy matrix to a polynomial with half the original order, succeeded in obtaining results
for the stability boundaries of symplectic maps of dimension as high as eight.

The aim of the present paper is different. Since general results are difficult to get for the stability boundaries in
dimensions higher than eight, we restrict attention in classifying all the possible stability types in the general case of
a Hamiltonian system witlv + 1 degrees of freedom, which corresponds t&vadimensional symplectic map. We
introduce a new terminology for all the possible stability types, which help us in studying the direct transitions
between these types.

The properties of periodic orbits of Hamiltonian systems with three degrees of freedom or equivalently of
four-dimensional symplectic maps, have been studied extensively (e.g. [13—-24]). In such systems particular attentior
has been given to complex instability (e.g. [25—-31]), a type of instability that does not appear in systems with two
degrees of freedom. After having studied systems with three degrees of freedom, the next step towards understandin
instabilities in multidimensional systems is the case of four degrees of freedom. A four degrees of freedom system
is the simplest case where new different types of complex instability appear. So we study in detail the case of a
Hamiltonian system with four degrees of freedom which corresponds to a six-dimensional symplectic map. We note
that the stability parameter space of such systems is three-dimensional and can be visualized. The boundaries of a
the stability types are obtained helping us defining the various transitions not only from stability to instability but
also between different types of instabilities.

The paper is organized as follows. In Section 2 we review briefly the basic theory of stability of Hamiltonian
systems, giving definitions of many concepts like the monodromy matrix and the stability indices and providing
some basic formulae for these quantities. The results of the present paper are presented in Sections 3 and 4. |
particular in Section 3.1 we define the different stability types that are possible in the general case and we introduce
a new terminology for them. In Section 3.2 we study the cagé &f1 degrees of freedom whe¥iis even or odd,
counting all the possible stability types. In Section 3.3 the direct transitions between different stability types are
studied. In Section 4 we apply the results of the previous two sections in some particular cases. For completenes:
sake in Sections 4.1 and 4.2 we review the stability types that appear in Hamiltonian systems with two and three
degrees of freedom, respectively, while the complete study of the four degrees of freedom case is done in Sectior
4.3. Finally in Section 5 we summarize our results.

2. A quick reminder of the stability theory of Hamiltonian systemswith N+1 degrees of freedom

One of the main motivations for studying the stability of periodic orbits of Hamiltonian systems is its great
significance for the dynamical behavior of the system. It is well known that non-periodic orbits near a stable
periodic orbit are ordered, i.e. their evolution in time is similar to the behavior of the periodic orbit, while the
unstable periodic orbits introduce chaotic behavior in the system.

Let us consider an autonomous Hamiltonian systiymot necessarily integrable, wit+ 1 degrees of freedom,
whereN is an integer withV > 1, which is perturbed. Then its Hamiltonian function can be written as

H = Ho + eHy, Q)
wheree is the perturbation parameter. The equations of motion for this system can be expressed in the form

%= —J.VH =—J.V(Ho + eHy), (@)



Ch. Skokos/ Physica D 159 (2001) 155-179 157

with x = (g1, g2, ... gn+1. P1. p2. ..., pn+1) and
VH — <8H dH OH OH OH dH )’
dq1” dq2" T dgn+41 dp1  dp2’ T OpN41

whereg;,i = 1,2,..., N + 1 are the generalized coordinates gndi = 1, 2, ..., N + 1 the conjugate momenta
and prime () denotes the transpose matrix. The mairbxas the following block form:

=(ha) ©

wherel,, is then x n identity withn = N + 1 andQ,, is then x n matrix with all its elements equal to zero.
The linear stability of a periodic orbit of this system with peribds determined by the solution of the linearized
equations

J.E=(Po+ePy) - E=P-& (4)

whereé is a vector denoting the deviation from the given periodic orbit in thé §22)-dimensional phase space
of the system and represented bg2& + 2) x 1 matrix,P = Pg + ¢P1 is the Hessian matrix of the Hamiltonian
(1) calculated on the periodic orbit the stability of which we study. The elements of natrix

 0°H
L Bxiaxj ’

i,j=1,2,...,2N +2 (5)

are T-periodic functions of time since the RHS of Eq. (5) is calculated forfthgeriodic orbit. Egs. (4) are the
so-called variational equations of the system for the particular periodic ort@NA+- 2) x (2N + 2) matrix whose
individual columns consist of 2 + 2 linearly independent solutions of Egs. (4) is called a fundamental matrix of
solutions of the variational equations (4). The fundamental mattix whose solutions correspond to the initial
conditions

X(0) = l2n-+2, ®)
gives the evolution of the deviation vectfor r = « T, x € N* through the relation

ET) = [X(D)]" - §0). )
The matrix

A =X(T) (8)

is called the monodromy matrix and satisfies the symplectic condition [32]
AJ. A= 9)

The stability type of the periodic orbit is determined by knowing the nature of the eigenvalues of theAnatrix
Due to the symplectic condition (9) and due to the fact that the matrix coefficients are real, the eigenvalues of matrix
A have the following properties: i is an eigenvalue then/1 is also an eigenvalue, andiifis an eigenvalue the
complex conjugate.* is also an eigenvalue. These properties show that the eigenvalge$ andi. = —1 are
always double eigenvalues and that complex eigenvalues with modulus not equal to 1 always appear in quartets.

When all the eigenvalues are on the unit circle the corresponding periodic orbit is stable. If there exist eigenvalues
not on the unit circle the periodic orbit is unstable. The different types of instabilities will be studied in detail in the
next section.
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An interesting question is the following: assume thatdee 0 we know the eigenvalues of the corresponding
monodromy matriXdg. What are the possibilities for the eigenvalues of the perturbed n#strishich corresponds
to the perturbed system (1) under the symplectic constraint? This question has been answered in the 1950s by Krei
[33], Gelfand and Lidskii [34] and Moser [35]. The theory they developed is presented in detail in [32]. According
to this theory the only possible movement of simple eigenvalues on the unit circle, due to perturbation, is movement
on the unit circle, which means that the stability type of the periodic orbit does not change. On the other hand,
multiple eigenvalues on the unit circle have two possibilities. Either they move on the unit circle or off the unit
circle. The second case is called complex instability. Finally, if a double eigenvalue aduats-1 then under the
effect of perturbation these eigenvalues either remain on the unit circle or move on the real axis off the unit circle.
The latter case is called in general instability.

An important quantity in determining the fate of eigenvalues under perturbation is the so-called “kind” of the
eigenvalues. Lej be an eigenvector corresponding to the simple eigenvatrethe unit circle, then we define the
inner product

(9,9) =i(JgQ), (10)

where(., -) denotes the usual inner product. Theis called an eigenvalue of the first kind(d, g) > 0 and of the
second kind if{g, g) < 0. Let nowa be anr-tuple eigenvalue on the unit circle agé corresponding eigenvector.

If (g,g) > 0O for any eigenvector theh is called anr-tuple eigenvalue of the first kind and {f, g) < O then

A is anr-tuple eigenvalue of the second kind. Eigenvalues of the first and second kinds are said to be definite.
If on the other hand, there exists an eigenvegtat 0 such that(g,g) = O then the eigenvalue is said to be
indefinite or of mixed kind. In this case there exist an eigenvegtso that(g, g) is positive and another one

so that(g, g) is negative. The well-known theorem of Krein—Gelfand—Lidskii [32] states that a linear system is
strongly stable (i.e. no small perturbation may turn it unstable) if and only if all eigenvalues lie on the unit circle and
are definite.

From the above theory we see that if we have only simple eigenvalues on the unit circle then it is impossible to
have instability due to small perturbation. The only way to have instability by perturbing the system is to have two
simple eigenvalues of different kinds colliding to create a double eigenvalue. Then instability may occur.

A few remarks on the connection of Hamiltonian systems with symplectic maps are necessary. Since autonomous
Hamiltonian systems are conservative, the constancy of the Hamiltonian function (1) introduces a constraint of the
form

H(q1,92, ... qN+1, P1, P2, - -, PN+1) = C, (11)

wherec is a constant value. This constraint fixes an eigenvalue to be equal to 1 and so by the symplectic nature
of the problem there must be a second eigenvalue equal to 1. Thus, there aré¢vambynZonstant eigenvalues.
So we can constrain the study ofAa+ 1 degrees of freedom Hamiltonian systems toNxdimensional sub-
space of the general phase space. This subspace is obtained by the well-known method of the Poincaré surface «
section (PSS). Generally speaking we can assume a PSS of the farm= constant. Then only the variables
q1,92, ..., 4N, P1, P2, - - ., py are needed to describe the evolution of an orbit on the PSS, sincecan be found
by solving Eq. (11). The corresponding monodromy matrix of the periodic orbit is also symplectic and will be de-
noted ad.. In this sense & + 1 degrees of freedom Hamiltonian system correspond¥ tdiPnensional symplectic
map.

The eigenvalues df define the stability of the corresponding periodic orbit. These eigenvalues are roots of the
characteristic polynomial

P (1) = detlL — Alay), (12)



Ch. Skokos/ Physica D 159 (2001) 155-179 159
which is a palindrome of the form [10]
PO) =22 — AN L AN oAV 2 DV A - — Ay 4+ L (13)

The coefficients oP can be easily expressed as functions of the elements of rhafftxe characteristic polynomial
(13) can be written in a simpler form in terms of the stability index

1
b= 5 + A. (14)
In particular it becomes
0b) = Aph™ — APV (DN AL p + (DN A (15)

The polynomialQ (b) is called the reduced characteristic polynomial. One of the main advantages of introducing
the stability indiced;, i = 1, 2, ..., N is that they solve a polynomial of half the original order, i.e. a polynomial
equation of ordelN. This turns the computational problem into a much more tractable one.

The coefficientsA}, i = 0,1,2,..., N of Q(b) are related to the rootg, i = 1,2, ..., N by the well-known
formulae

Ay=1,
N
A/l = Zi:l bi,
/
Ay =2 bibj, (16)

Aly =biba, ..., by.

SoA] isthe sumofall possibletuplesoby, .. ., b,. The connection between the coefficieats j = 0,1, ..., N-1
of the characteristic polynomial (13) and the coefficiefitsi = 0,1, 2, ..., N of the reduced characteristic poly-
nomial (15) can be found using some algebra and induction. In particular we get

/2] N —i+2u
AN,:Z( . )A;_ZM, i=12...,N, (17)
u=0

where [] denotes the integer part bfind

(5)
J
denotes the combinations éfover j. The stability type of a periodic orbit is represented by a point in the

N-dimensional parameter spaSewhose coordinates are the coefficiedig A1, ..., Ay_1 of the characteris-
tic polynomial P (1.).

3. Stahbility types of Hamiltonian systemswith N+1 degrees of freedom

As explained in the previous section the stability of a periodic orbit in a Hamiltonian systervwithh degrees
of freedom can be studied in th&v2dimensional reduced phase space using the method of the Poincaré surface
of section. In this sense the Hamiltonian system corresponds Ao-@dirdensional symplectic map. In the present
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section we study in detail all the possible stability types that can occur in such a system and the possible transitions
between these types.

3.1. Terminology of the possible stability types

The stability type of a periodic orbit is determined by the values of the eigenvalues of the characteristic polynomial
(13). Equivalently the stability indices,i = 1, 2, ..., N (EqQ. (14)) can be used to indicate the stability of the orbit
in the following way:

(i) The cas& < (—2, 2) corresponds to stability with and /A complex conjugate numbers on the unit circle.
In this case we say that the orbit is stah§@.

(il) The caseb € (—oo0, —2) U (2, 0o) corresponds to instability with real. In this case we say that the orbit is
unstable U). In particular forb > 2 we have two real positive eigenvalues, one (&)qgreater than 1 and
the other ¥ smaller than 1. Fob < —2 we haver < —1 and—1 < 1/1 < 0. We remark that these two
cases are equivalent regarding the stability character of the periodic orbit, but not completely identical since a
positiveb cannot become negative under a continuous change of a parameter of the system.

(iii) The caseb € C—R corresponds to complex instability}. In this case we have four non-real eigenvalues not
laying on the unit circle, forming two pairs of inverse numbers and two pairs of complex conjugate numbers
corresponding to two complex conjugate stability indices. Two of the eigenvalues are inside the unit circle
while the other two are outside it.

All the above cases are shown in Fig. 1.

In order to describe all the possible stability types giVa+ 1)-dimensional Hamiltonian system, we introduce
now the following terminology:

Definition 1. We say that the orbit has an-tuple stability” if 2z eigenvalues are on the unit circle. This stability
type is denoted as,.

(S) ()
A
A
/ \\ /- /\*
k// \ /A
1/A
}\*
-2<b<2 b1.2€C'R
) )
1/)\) A A E1/}\
b>2 b<-2

Fig. 1. Configuration of the eigenvalues on the complex plane, with respect to the unit circle, for the $tablesiable {) and complex
unstable Q) cases. In every cageis the corresponding stability index. We remark thatlenotes the complex conjugatesof
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Definition 2. We say that the orbit has am*tuple instability” if 2n eigenvalues are on the real axis. This stability
type is denoted ak,,,.

Definition 3. We say that the orbit has afrtuple complex instability” if 4 eigenvalues are on the complex plane
but not on the unit circle and the real axis. This stability type is denotet} .as

As mentioned above all th¥,, types are not identical due to the different arrangements of the signs of the
stability indices. In most applications, when the stability type of a periodic orbit is needed, researchers do not take
into account the arrangement of the stability indices on the real axis in the case of instability, but in many cases
this is necessary, like for example in finding the possible transitions between different stability types. For a detailed
study of the different stability types the following definition is needed.

Definition 4. We say that the orbit has aiwi1, mo)-instability” if its stability type isU,, with m = m1 + m» and
2m1 eigenvalues are negative and2positive. This stability type is denoted &%,, ..

Inthe general case, a periodic orbit of a Hamiltonian systemMitti degrees of freedom, or of @2dimensional
symplectic map, has the stability tysgU,, A; (or S, U,.m,4; if we want to be more specific) where the integers
n, m = mj + my and! satisfy the inequalities

0O<n<N, O<m=<N, 0<1=<[N/2], (18)
with the constraint
n+m+2=N. (19)

We note that a periodic orbit is stable only when its stability typg&xis In all other cases the orbit is unstable
since there exist eigenvalues not on the unit circle.

3.2. Counting the possible stability types of Hamiltonian systems with even and
odd number of degrees of freedom

In order to count all the different stability typ&sU,, A; that a Hamiltonian system withi + 1 degrees of freedom
can exhibit, one must count all the possible combinations ef and/. From Eq. (18) we see that for a givéh [
cantake thevaluesQ, ..., [N/2]. For a given value aof, m can take the values Q, ..., N — 2/. Then the value of
n is determined by Eqg. (19). So the numbérof all the possible stability type$;, U,, A; of a Hamiltonian system
with N + 1 degrees of freedom is

(20)

N=> > 1=

[N/2] N—2i i %(N + (N +3), forN + 1leven
=0 m=0

F(N +2)2, for N + 1 odd

since the value off /2] is (N — 1)/2 for N + 1 even andV/2 for N + 1 odd.

The different stability types correspond to different regions of sheimensional parameter spaSewhose
coordinates are the coefficienty, A1, ..., Ay_1 of the characteristic polynomiat()). These coefficients can
be expressed as functions of the elements of the monodromy rhasind through Eq. (17) as functions of the
coefficientsAg, A7, ..., A}y of the reduced characteristic polynomi@(b). The stability typel,, corresponds to
m + 1 different regions of the parameter space since there mxistl different arrangements of the signs of the
stability indicesh; on the real axis. In particuldy,, corresponds to the cas&s ,;, U1 m—1, U2.m—2, ... , Un.0. SO
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the numbeV* of different stability regions in the/-dimensional parameter spaSes

(N/2) N-2I L(N+1)(N+3)2N +7), forN+leven
Ne=3 Y mtp=1* (21)
=0 m=0 Z(N +2)(N + 42N +3), for N + 1odd

A significant difference betwegv + 1)-dimensional Hamiltonian systems with odd or even degrees of freedom
is that in the former case the system can be completely complex unstaj)e)( while in the latter this is not
possible since the maximum valuelds (N — 1)/2.

3.3. Transitions between different stability types

In Fig. 2 the basic transitions between different stability types are shown schematically. These transitions are as
follows:

() The transitionS; — Uj. This transition happens when two eigenvalues move on the unit circle, as a parameter
of the Hamiltonian system changes, coincide.ea 1 and split along the positive real axis (tangent bifurcation)
(Fig. 2(a)). The corresponding stability index is positive and increases thioggh. The final stability type
is Up,1. A similar transition from stability to instability, happens when the two eigenvalues leave the unit circle
passing though the poiat= —1 (period-doubling bifurcation). The stability index decreases thraugh—2
and the final state &1 o.

(i) ThetransitionS, — Aj. Thistransition happens when two pairs of eigenvalues moving on the unitcircle collide
and split off it, at a point wherg? # 1 (Fig. 2(b)). The corresponding real stability indiceg < b, < 2,

—2 < by < 2 become equdl; = b, and then become complex.

(i) The transitionU2 — A1. This transition happens when two real positive (or negative) pairs of eigenvalues
become equal and move on the complex plane, leaving the real axis and staying away from the unit circle
(Fig. 2(c)). The corresponding real stability indidas> 2, b2 > 2 (orb; < —2, by < —2) become equal
b1 = by and then become complex. So we have the transtiign — A1 (or Uz,0 — Aj). Itis evident from
the configuration of the eigenvalues on the plane, that the trangitign— A1 is not possible, since the two
stability indices cannot become equal.

(iv) The transitionSiU1 — Aj. This transition happens when two pairs of eigenvalues coincide enl (or
A = —1) and split on the complex plane, staying away from the unit circle. The pair correspondingsto the
case was initially on the unit circle, while, the one corresponding tdthease was on the real positive (or
negative) axis (Fig. 2(d)). The stability indices that were real initial®/< b1 < 2,b2 > 2 (or—2 < b1 < 2,
by < —2) became equdl = b, = 2 (or —2) and then complex. This transition is of the fosalU/g 1 — A1
(or S1U10 — A1).

We remark that the above transitions can also happen following the opposite dirBgtien S1, A1 — S2,
A1 — UpandAp — S1U1.

As already mentioned the stability type of a periodic orbit of a Hamiltonian system is represented byAipoint
the correspondingy-dimensional parameter spageThe coordinates of are the coefficients of the characteristic
polynomial P (1) so,A = (Ao, A1, ..., Ay—1). As a parameter of the Hamiltonian system changes the coefficients
of the characteristic polynomiat (1) also change, causing possible changes in the stability type of the periodic
orbit and the motion of point in S. As a result of that the stability indicés, i = 1, 2, ..., N change too.

The above described transitions happen when certain constraints on the values of the stability indices, are valid
These constraints define a transition hypersurface in the parameter&péeecrossing of which, by poim,
corresponds to the change of the stability type of the orbit. The equation of this hypersurface is obtained by
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— > *@@ — >
(d) S4Us— Aq

Fig. 2. Schematic representations of the configuration of the eigenvalues on the complex plane for the basic transitions between different stability
types, where one or two pairs of eigenvalues are involved. In every panel the unit circle is also plogd->(&);. Two eigenvalues move on

the unit circle, coincide o = 1 and split along the positive real axis. (§) — A1. Two pairs of eigenvalues move on the unit circle, collide

and split off it at a point whera? # 1. (c) U2 — A1. Two real pairs of eigenvalues coincide and move on the complex plane, but not on the

unit circle. (d)S1U1 — A1. A pair of eigenvalues on the unit circle collide with a pair of real eigenvalues enl and split on the complex

plane staying away from the unit circle and the real axis.

(@ S4— Uy

(b) Sp— A4

() Ua— A4

o R P

substituting the constraints on the stability indiégsn Egs. (16) and (17). For instance the transitfan— Uj
(Fig. 2(a)) happens whédnpasses through = 2 for S1 — Ug,1 orb = —2 for S1 — U1,0, Which corresponds ta
crossing thé N — 1)-dimensional hypersurface éproduced by putting = 2 orb = —2in Egs. (16) and (17). In
a similar wayS, — A1 (Fig. 2(b)) and/, — A1 (Fig. 2(c)) happen when poidt crosses théN — 1)-dimensional
hypersurface produced iy = b», while the transitionS1U1 — Aj (Fig. 2(d)) happens wheA crosses the
(N — 2)-dimensional hypersurface producediy= b» = 2 orby = by = —2.
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We remark that all the possible constraints are of the form +2,b = —2,b1 = by, b1 = b = +2 and
b1 = by = —2. These constraints define through Egs. (16) and (17) the dimensionality of the corresponding
hypersurface. Every constraint reduces the dimensionality of the hypersurface by constant number. In particular,
the constraint$ = +2,b = —2, b1 = by decrease the dimensionality of the hypersurface they define by 1, while
the constraint$; = by = +2,b1 = by = —2 by 2.

3.3.1. Direct transitions of the form S, U,,, A — Sy+5nUm+sm Ai+si

We consider now the problem of finding all the possible direct transitions between different stability types and the
dimension of the corresponding transition hypersurface ihhe different possible arrangements of the eigenvalues
of the U,,, case makes this problem complicated, since certain arrangements of the eigenvalues can even make
transition impossible. As an example we remind the already mentioned c8se-of A1. In this casd/z o — A1
andUp 2 — A1 can happen when poidtcrosses théN — 1)-dimensional hypersurface produced by the constraint
b1 = by, while the transitiorU1 1 — A1 is impossible. As a first step we find if and how a transition of the form

SpUnd; — Sn+8nUm+8mAl+5[s (22)

wheredn, §m, 81, are the changes in the multiplicity §f U and A, can happen. By this we mean that there exist at
least one configuration of the eigenvalues, compatible wititheandU,, s, types, which allows the transition
to happen.

Since both the initial §,U,, A;) and the final §,, s, Usn+sm A1+s1) Stability types satisfy the constraint (19) we
conclude thaén, dm, 81 satisfy

Sn +8m + 281 = 0. (23)

So the constraints (18), (19) and (23), define all the possible direct transitions of the form (22) of a Hamiltonian
system withV + 1 degrees of freedom.

The different arrangements of the eigenvalues, influence the exact form of the constraints that define the hyper-
surface inS, which corresponds to the transition (22). For example, the transities U1 introduce the constraint
b = 2 orb = —2, which decreases the dimensionality of the hypersurface by 1, with respect to the dimeision of
In order to simplify the study of the transitions we consider equivalent the consthaints2,» = —2, in the sense
that they are of the same form and have the same effect on the dimensionality of the hypersurface that represent
the transition in the parameter spate

Based on the simple transitions shown in Fig. 2 we find the constraints on the stability ihdibasdefine the
corresponding transition hypersurface in the parameter spdogarticular we have the two cases seen in Table 1:

(i) én-8m < 0. In this case the multiplicity of or U does not change or if both of them change the changes
have different signs. The changkeis found from Eq. (23). We distinguish the following cases:

Table 1
The number of different kinds of constraints and the dimengiaf the corresponding transition hypersurface inshéimensional parameter
spaceS, for the possible transition$, U,, A; — SysnUmasm Ai+si

Case Number of constraints D

b1 = b by = %2 by =by = %2
@i)én-dm <0 |82] |81 4+ 8n| — |51] 0 N — |81 + én|
(ii(@)) én - Sm > 0 with én, Sm even |81] 0 0 N — |81
(ii(b)) 6n - 8m > 0 with 8n, 5m odd 18] — 1 0 1 N—18ll -1
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(a) If sm = 0 Eq. (23) give$n = —25/, which means thas!| quartets of eigenvalues move from the unit
circle to the complex plane, but not on the real axis (or vice versa), folloWin¢ransitions of the form
seen in Fig. 2(b). These transitions introdigié constraints of the formh; = by.

(b) If 6n = O we getsm = —251, which means tha$!| quartets of eigenvalues move from the real axis to
the complex plane, but not on the unit circle (or vice versa), followdhgtransitions of the form seen in
Fig. 2(c). These transitions introdu®| constraints of the formh; = b».

(c) If én-8m < 0 andél = 0 we get from Eq. (23)n = —ém, which means thatn| pairs of eigenvalues
move from the unit circle to the real axis (or vice versa), followjdwg| transitions of the form seen in
Fig. 2(a). These transitions introdufa| constraints of the formh = 2 orb = —2.

(d) If 8n - 8m < 0 andél # 0 thensl has the same sign wittk or ém. If én - § > 0 the eigenvalues come
from (or go to) the real axis, followingsn| transitions of the form of Fig. 2(a) and!| transitions of
the form of Fig. 2(c). These transitions introdyée| constraint®y = +2 and|§l| constraint®, = by,
respectively. 18m - §1 > 0 the eigenvalues come from (or go to) the unit circle, followifig| transitions
of the form of Fig. 2(a) ands!| transitions of the form of Fig. 2(b). These transitions introdifce|
constraints = +2 and|§!/| constraint$1 = by, respectively.

One can easily check that all the above transitions introthicesn| — |§1| constraints of the formh = +2
(note that alway$s! + dn| = |81 + m|) and|8!| constraints of the fornhy = b». All these constraints are
independentto each other since they refer to different stability indices. So the dimBritire corresponding
transition hypersurface is

D =N — |5l + 8nl. (24)

(i) én - ém > 0. In this case the multiplicity of botl andU increase (or decrease) leading to decrement (or
increment) of the multiplicity ofA. This means that eigenvalues come from (or go to) the complex plane in
quartets. From Eq. (23) we ha¥e + §m = —281. We distinguish the following cases:

(a) If 6n andém are even, the transition happens as seen in cases (b) and (c) of Figs2.@mstraints of
the formb1 = b, are introduced and the dimensidnof the corresponding transition hypersurface is

D =N —|8l]. (25)

(b) If n andém are odd then one transition of the form shown in Fig. 2(d) is needed. Thus, W& |getl
constraints of the fornd; = b, and 1 constraint of the fory = b> = +2. The dimensiorD of the
transition hypersurface is

D=N-—15l|—1. (26)

From the above analysis it is evident that the direct transition between any two stability types permissible by
Egs. (18) and (19) is possible. The dimensioof the transition hypersurface given by Egs. (24)—(26) is the maximal
possible in the sense that any particular arrangement of the eigenvaliiggofiU,, . 5, which is compatible with
the transition (22) is performed (if it happens at all) by the crossingMfdimensional hypersurface with

M < D. (27)

The dimensiorD of the hypersurface which corresponds to a certain transition is an indicator of how probable this
transition is, or in other words how specific the parameters that influence the stability of an orbit must be in order
for this transition to happen. For example, the transitign— Uy, that destabilizes a fully stable orbit making

it fully unstable, is done when the poirt (which represents the stability state of the orbit in the parameter space
S) passes through a specific point$h In this case we havén = —N anddm = N and from Eq. (24) we get
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(a) S4U4,0 —S4Uo,1

(b) Uz, 01— Ug 241

Fig. 3. Simple transitions between different stability types where one or two real and negative pairs of eigenvalues become positive, changing
the distribution of the eigenvalues in thg, stability type without changing:. (a) S1U1.0 — S1Uo.1. Two real negative eigenvalues move on

the unit circle passing trough= —1 while simultaneously two eigenvalues from the unit circle pass frem1 and split along the positive real

axis. (b)Uz,041 — Ug,241. Two pairs of negative real eigenvalues coincide on the real axis and split on the complex plane, staying away from
the unit circle, while simultaneously four complex eigenvalues, not laying on the unit circle, fall on the real positive axis and split remaining on
it.

!

!

D = 0. So, this transition is performed when the parameters of the dynamical system have very specific values, in
order for pointA to pass through a particular point in thedimensional spac§. On the other hand, the transition

Sy — Sy_1U1 is more easily performed, since it happens when the pbiatosses a transition hypersurface of
dimensionN — 1 as it can be easily seen from Eq. (24).

3.3.2. Direct transitions of the form S, Uy, m, A1 — Sn/Um/l’m/zA,/

In order to study the possible transitions between different stability types, taking into account the different
arrangements of the eigenvaluedjin, we must consider transitions that change the arrangement of the eigenvalues
in Uy, in addition to the ones described in Fig. 2. Simple transitions that change the internal distribution of the
eigenvalues in th&/,, stability type are seen in Fig. 3. In particular in Fig. 3(a) we see the transiibno —

S1Up 1, which happens when two real negative eigenvalues move on the unit circle passingireugtl and
simultaneously two eigenvalues from the unit circle pass fiom 1 and split along the positive real axis. The
stability indices become simultaneougly = —2 andb, = 2. So the transfer of a pair of real eigenvalues from
negative to positive values (and vice versa) is done through another pair initially located on the unit circle. In order
to transfer two pairs of real eigenvalues from negative to positive values (and vice versa) we perform the above
transition twice, which means that two pairs of eigenvalues on the unit circle are needed. In this case we have
SoUz.0 — S2Up,2 and the introduced constraints dre= bo = —2 andbz = bs = 2. Another way to perform

the same transfer of eigenvalues is through a quartet of eigenvalues correspondingAe. tagarticular we can
haveUs 0A1 — Up 241 as seen in Fig. 3(b). In this case two pairs of negative real eigenvalues coincide on the real
axis and then move on the complex plane but not on the unit circle, while simultaneously the four eigenvalues that
correspond tA1, fall on the real positive axis and split remaining on it. So we have the constraiasb, < 0

andbs = by > 0 which are more general than the constrains= b, = —2 andbsz = by = 2 we get for

the transitionSaUz.0 — S2Up 2. This means that the transition hypersurface which corresponds to the transition
S2U2.0 — S2Up 2 is a subset of the hypersurface which correspondstgA; — Up 2A41.
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Table 2

The 10 possible simple transitions of the stability typ&/,,, ., A; = [n, m1, m2, 1] to the final stability types listed, when only one or two

pairs of eigenvalues are transferred. Any other general transition can be decomposed in successive applications of the transitions shown in this
table, taking care of not using the same eigenvalues twice. The constraints on the values of the stability indices that any particular transition
introduces are registered, as well as the decreshefnthe dimensionality of the corresponding transition hypersurface

Case Final type Constraints d
1 [}’l,mliFZ,mz,lil] bj_:bz 1
2 [n,m1, mo 2,1 £1] by = by 1
3 [nF1Lm£1 mpl] b1 =-2 1
4 [nF1my,mp+11] b1 =2 1
5 [nFLmFlmpl+1] bi=by=-2 2
6 1 my,meF11£1] by =by=2 2
7 [nymiFLmyF11+1] b1 =2,bp=—-2andb3=20r—-2,n>1 3
8 [, m1F 2, mp£2,1] by =by b3 =bsl>1 2
9 [n,m1F1Lme+11] by=-2,bp=2,n>1 2
10 [ F 2, m1, ma, 1 £1] by = by 1
Based on the cases described in Figs. 2 and 3, and using for simplicity the notation
Sn Uml,mgAl = [”Z’ mi, ma, l]a (28)

we register in Table 2, all the possible transitions which involve one or two pairs of eigenvalues. In cases 1 and 2
four negative or positive real eigenvalues move from the real axis to the complex plain, but not on the unit circle
(or vice versa) following transitions of the form seen in Fig. 2(c). These transitions introdijce &, constraint

which decreases the dimensionality of the corresponding transition hypersuriace byln cases 3 ah4 a pair of
negative or positive eigenvalues move from the real axis to the unit circle (or vice versa) following transitions of the
form seen in Fig. 2(a). These transitions introduée-a —2 orb = 2 constraint, respectively, wiih = 1. In cases

5 and 6 a pair of negative or positive real eigenvalues and a pair of eigenvalues located initially on the unit circle
move to the complex plain, staying away from the unit circle and the real axis (or vice versa), following transitions
of the form seen in Fig. 2(d). These transitions introduée & b, = —2 or by = by = 2 constraint, respectively,

with d = 2. In case 7 a pair of negative and a pair of positive real eigenvalues move on the complex plain staying
away from the unit circle and the real axis (or vice versa). In order for this transition to happen a pair of eigenvalues
on the unit circle is needed. This pair goes to the real negative (or positive) axis, following a transition similar to
the one of Fig. 2(a), introducing the constrabnt= —2 (or b = 2). Simultaneously four eigenvalues come from

the complex plain, coincide at poiat= 1 (or» = —1) and one pair split on the real positive (or negative) axis
while the other move on the unit circle (opposite transition to the one seen in Fig. 2(d)). This transition introduce
the constrainb; = b, = 2 (orby = bp = —2). So in case 7 of Table 2 we hade= 3. In case 8 two pairs and

in case 9 one pair of real eigenvalues change their positidn,infollowing the transitions of Fig. 3(b) and (a),
respectively. In cas8 a quartet of eigenvalues on the complex plain and in case 9 a pair of eigenvalues on the real
axis are needed. In both cases we have 2. In case 10 two pairs of eigenvalues move from the unit circle to the
complex plain (or vice versa) following the transition of Fig. 2(b). In this case a consbraiatb; is introduced,

sod = 1.

When a transition between different stability types occurs pairs and/or quartets of eigenvalues are simultaneously
transferred between thg U and A types. The main difficulties in studying these transitions are the different
arrangements of the eigenvaluesliy and the fact that eigenvalues come from (or goA@)in quartets. The
transitions in Table 2 are ordered by taking into account these difficulties. The first cases listed are simple cases
with d = 1. Som1 ormy change in cases 1 and 2 by chandiagd in cases 3 and 4 by changimgn cases 5-#1



168 Ch. Skokos/ Physica D 159 (2001) 155-179

or/andm; change by moving a quartet of eigenvalues framin a more complicated way sinée> 1. In cases 8
and 9mj andm change while: and/ remain unchanged. In the final casesitpandm; do not change, whilé
andn do.

In order to determine if a transition from an initial stability type fu1, m2, [] to a final type |’, m’, m}, '] is
possible, and also find the dimension of the corresponding transition hypersurfaocgérdecompose the general
transition in several simple transitions from the ones registered in Table 2, taking care of not using the same pair
or quartet of eigenvalues twice. Every time one of the transitions of Table 2 is used the corresponding constraint
reduces the dimensionality of the hypersurface/b$o, the procedure for finding the dimension of the transition
hypersurface can be described as follows. We change the initial stability aypa [m2, [] applying case 1 of
Table 2 as many times as possible. Then we change the resulting stability type applying case 2 of Table 2 as man
times as possible and so on. In performing these steps we take into account the following rules:

() The quantitiessn = n’ — n, ém1 = m’} —m1, mo = m,, —m2, 8 =1’ — | must keep their initial sign or
become equal to 0.
(iiy If 6n = 0 the cases of Table 2 that changeannot be applied. The same holdsfer;, §mo andsl.
(i) Any step is performed only if it brings the stability type closer to its final form in the sense that the quantity
Xs = |6n| + |dm1| + |8m2| + |81| decreases.

(iv) Any step is performed only if the pairs or quartets of eigenvalues involved have not been used previously.
(v) The procedure stops ¥'s = 0, which means that the final stability type has been reached and the general
transition is possible. If we reach at the bottom of Table 2, apply case 18a&d0 then the general transition

is not possible.

The following simple example clarifies the use of Tables 1 and 2. We consider a Hamiltonian system with six
degrees of freedom so that = 5 and the general transitichyU,A1 — S1U4. Using Table 1 and the fact that
sn =0,8m = 2,81l = —1, we conclude that there exist at least one arrangement of the eigenvalues that makes this
transition possible, through a hypersurface with maximum dimenBien4 (Eq. (24)). For example, the transition

[1(2). 0(0), 2(2), 1(D)] — [1(D), 0(0), 4(2), 0(0)]

can happen following case 2 of Table 2. Case 1 of Table 2 cannot be applied since it is against rule (ii). This transition
is performed in the five-dimensional parametric spac¢hrough a four-dimensional hypersurfagg produced
by the constrainb; = b,. We note that in the parentheses beside the indices we register the number of pairs (or
quartets for the index) of eigenvalues that can be moved, in order to easily check the validity of rule (iv).

Another arrangement of the eigenvalues compatible with the general form of the transition is

[1,2,0,1] — [1,1,3,0].
This transition can be performed by applying successively cases 2 and 9 of Table 2, i.e.
[1(D), 2(2), 0(0), 1(1)] — [1(D), 2(2), 2(0), O(0)] — [1(0), 1(1), 3(0), O(0)].

All the other cases cannot be applied since they are against rule (iii) (cases 1, 8) and rule (ii) (cases 3-7). The
corresponding constraints ave = b, b3 = —2 andb4 = 2 which means that this transition is performed through
a two-dimensional surfacgs. It is obvious thatF> c F;. On the other hand, the transition

[1,2,0,1] — [1,0,4,0]
cannot happen. For example, we could have

[1(1). 2(2), 0(0), 1(D)] — [1(D), 2(2), 2(0), 0(0)] — [1(0), 1(1), 3(0), 0(0)]
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following cases 2 and 9 of Table 2 and stop because we cannot apply case 9 again, since the pair of eigenvalues on
the unit circle, that corresponds $@, has already been used in the previous step (rule (iv)). Also case 10 cannot be
applied sincé! = 0 (rule (ii)).

From the above example it becomes clear how to use Tables 1 and 2 in order to find the possible transitions
between different stability types by taking or not into account the possible arrangements of the eigenvalues related
to U,,. Also the equations that define the transition hypersurface imiftdBmensional parameter spaSeare
obtained along with its dimensionality.

4. Cases of definite number of degrees of freedom

We apply the results of the previous sections in some particular cases, namely to Hamiltonian systems with two,
three and four degrees of freedom. Although the stability properties of Hamiltonian systems with two and three
degrees of freedom are well known [8—10] we include a brief treatment of these cases for completeness sake and in
order to illustrate the use of the terminology of the different stability types introduced in Section 3.1. In addition,
these well-known cases give us a good opportunity to check the information provided in Tables 1 and 2. On the
other hand, the study of systems with four degrees of freedom is far from considered complete. So we do a detailed
study of all the possible stability types and the transitions between them.

4.1. The case of two degrees of freedom

In the case of a Hamiltonian system with two degrees of freedom we Navel = 2 so the characteristic
polynomial (13) becomes

P(L) =A% — Agh + 1, (29)
where the coefficient is the trace of the monodromy mattix
Ag=TrL. (30)

So, there exists only one stability indéx, hence the reduced characteristic polynomial (15) is simply

Qo) =b— Af, (31)
where
A = b1 = Ag, (32)
1

as we derive from Egs. (16) and (17), for= 1. So the stability type of the orbit depends on the valud @fln
particular we have only two types of stability, in agreement to Eq. (20Met 1. If |b1] = |Ag| < 2 the orbit is
stable §1) and if|[Ag| > 2 unstable {/1). The usual notation for these two stability types &ifer stable and’ for
unstable [36—39] which does not practically differ from our notation.

The parameter spac where the possible stability types are defined is one-dimensional since the only coordinate
is Ag. In this space we have three different stability regions, in agreement to Eq. (2X) forl. The transition
boundaries correspond to the constraints= —2 andb; = 2, so that the possible regions are: 4a) < —2, which
corresponds to th& o stability type, (b)-2 < Ag < 2, which corresponds to th stability type, and (cio > 2
which corresponds to they 1 stability type. The only possible transition§s— U (U1,0 or Up, 1) and vice versa,
which corresponds to case 1 of Table 1 sidge- §n < 0. Sinces! = 0 these transitions are performed when the
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point A, that represents the stability state of the periodic orbit, passes through the pgiatst2 in agreement

to case 1 of Table 1. The transiti@n o — Up,1 is not possible since the two regionsdhare not neighboring.

Also this transition does not correspond to any of the cases listed in Table 2, since case 9 which resembles to the
transitionU1,0 — Ug,1 is valid forn > 1.

4.2. The case of three degrees of freedom

In this caseV + 1 = 3 so the characteristic polynomial (13) is
P =2 — A3+ Apa2 — A1h + 1. (33)
The coefficientAg andA; are related to the elements of the monodromy matrikrough the relations

Ao=Y_

i<j

Lii  Lijj

. AL=TrL. 34
Lji  Lj ' Y

The two stability indice®1, b, are roots of the reduced characteristic polynomial (15)
Q(b) = b*> — Alb+ A, =0. (35)
The coefficients of the two polynomials are related through
L=bi+by=A1,  Ay=biby=Ag—2 (36)

as we derive from Egs. (16) and (17) for= 2.

The parameter spac®where the possible stability types are defined, is two-dimensional with coordinates the
coefficientsAp andA;. The transition boundaries between the different stability regiofisie given by substituting
b = +2 in Eq. (35) and using Eg. (36), which yields the lines

b=42= Ag=2A1—2, b=-2= Ag= 2412 (37)

and by forcingb1 = b in Eg. (36) or equivalently putting the discriminant of Eq. (35) equal to zero, which yields
the curve

Ao = 14242 (38)

These boundaries create seven regions of different stability types in agreement to Eq. {21 trThese regions
are seen in Fig. 4.

We remark that the above analysis was performed by Broucke [9] in his work on the elliptic restricted three-body
problem, where he introduced a notation different to ours for the possible stability types. He named even—even
instability the typeJp 2, even—odd instability the typé; 1, odd—odd instability the typ&> o, even—semi-instability
the typeS1Up 1 and odd—semi-instability the ty#& U1 o, while he named stable th# type and complex unstable
the A1 type. We underline the fact that Broucke gave different names for all the regions seen in Fig. 4 taking into
account the different configuration of the eigenvalues on the real axis. In a similar approach Dullin and Meiss [40]
named theS; type elliptic denoting it as “E”, thé/g 1 type hyperbolic denoting it as “H”, th& o type inverse
hyperbolic denoting it as “I” and tha, type complex denoting it as “CQ”. Using the above notation they denoted
the seven different stability types of a four-dimensional symplectic map aSHFHH (S1Uo.1), El (S1U1.0), Il
(U2,0), HI (U1,1), HH (Uo,2) and CQ @A1).

On the other hand, most authors do not take into account the different arrangements of the eigenvalues on the
real axis, referring only to four different cases in agreement to Eq. (20)fet 2 [13—30]. Usually the stable
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Fig. 4. The parameter spackof a Hamiltonian system with three degrees of freeddmand A1 are the coefficients of the characteristic
polynomial. The boundaries of the different stability regions are the lines 241 — 2, Ap = —2A1 — 2, which correspond to one stability
index being equal to 2 and?2, respectively, and the linég = (A§/4) + 2 which corresponds to two stability indices being equal to each other.
On every stability region the corresponding stability type is marked.

case is denoted hy and the complex unstable case dysimilar to ourS, and A1 notations. The simple unstable
case U) corresponds t¢1U1 and in particular to case$ U1,0 and S1Up 1, while the double unstable case (DU)
corresponds td/, and in particular to case8y o, U171 and Up 2 [18,19,21,22,28,29]. Some authors follow the
above distinction of stability types using sometimes different terminology. As an example we refer to the papers of
Vrahatis et al. [23,24] where the authors name as elliptic—elliptic (EE) the stable case, elliptic—hyperbolic (EH) the
caseU, hyperbolic—hyperbolic (HH) the DU case and complex unstable (CU\tbase.

Although our terminology may seem a little heavy for the cases of two and three degrees of freedom, in comparison
to the already used terminology, it is perfectly suited for systems with many degrees of freedom, since it gives in a
very clear way all the information needed for the configuration of the eigenvalues on the complex plane.

4.3. Complete study of the four degrees of freedom case

We now continue with the main concept of this section, which is to find the stability regions in the three-dimensional
parameter spacs, of a four degrees of freedom Hamiltonian system. In this case weMawe3 and the charac-
teristic polynomial (13) is

P() =28 — A5+ At — Apa 4+ A1x2 — Aor + 1, (39)
where the coefficientdg, A1, A2 are related to the elements of the monodromy matrilkrough
Lii Lijj Lik

Ag = Z Ly Ljj L], A1=Z

i<j<k i<j

L Ly Lkk

Lii  Ljj
. A,=TrL. (40)

Lji  Lj
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The three stability indiceb,, b2, bz are roots of the reduced characteristic polynomial (15)

0(b) = b® — ALb? + Abb — Ay = 0. (41)
Using Egs. (16) and (17) fa¥ = 3 and by denotingl> = A, A1 = B, Ag = C for simplicity, we get

A:A/1=b1+b2+b3, B:A/2+3=b1b2+b1b3+b2b3+3,
C = A3+ 2A = b1bobz + 2(b1 + b2 + b3). (42)

The discriminant ofQ (b) is

A=g?+4p° (43)
where
g=-2A%1+1AB-3)—C+24, p=31B-3-31A2 (44)

The parameter spacewhere the possible stability types are defined is the three-dimensional spaBeC).
The regions of the possible stability typesdh are defined by the transition boundaries that correspond to the
following constraints:

(i) One stability index is equal to 2. The corresponding boundary is phasdiown in Fig. 5(a). The equation of
this plane is obtained by puttirlg= +2 in Eq. (41) and using Eq. (42)

p1: C=2(1—A+B). (45)
By puttingb = 42 in Eq. (42) we get the parametric equations of plape
p1: A=bi+b2+2, B =b1ba +2(b1 + b2) + 3,
C =2b1by 4 2(b1 + bo +2), with by, by € R. (46)

(ii) One stability index is equal te-2. The boundary surface is the plapg shown in Fig. 5(b). This plane is
defined by the following equations:

p2. C=-21+A+ B), (47)
or
p2: A=bi1+by—2, B = b1bo — 2(b1 + b2) + 3,
C =—2b1by 4+ 2(b1 + by — 2), with b1, by € R. (48)

(i) Atleasttwo stability indices are equal to each other. This condition is equivalent to the discrimifiagt (43))
being equal to zero. The corresponding boundary surfaces the two-sheeted surface shown in Fig. 5(c).
The upper sheet in Fig. 5(c) is denotedmsand the lower sheet as,. The equations of the two sheets are
obtained by puttingd = 0 in Eq. (43) and using Eqgs. (44). So we get

3
papa: C=—2A%+1AB-3) +24+ 2\/— [%(B —3)— %AZ] , (49)

with “ 4" corresponding tgz and “—" to p4. Equivalently the parametric equations of the whole surface are
obtained by putting1 = b, to Eq. (42):

pa: A=2bi+bs, B=0b3+2bib3+3,  C=bib3+4b1+2b3, with by, b3 R. (50)
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Fig. 5. The boundaries of all the possible stability regions in the parameter Spaica Hamiltonian system with four degrees of freedom.
A, B, C are the coefficients of the corresponding characteristic polynomial. The constrairt2 corresponds to the plana (a), while the
constraint = —2 to the planey, (b). The equality of at least two stability indices corresponds to the two-sheeted spisfatéc) composed of

the p3 andp,4 surfaces. In (c) the regions where the discriminamf the reduced characteristic polynomial is positive and negative are marked.

This surface divides the parameter sp&da the two regions shown in Fig. 5(c). In the region seen in Fig. 5(c)
on the left side ofp 4, the stability indices are three distinct real numbets< 0), while in the region seen

on the right side op 4, we have one real stability index with the other two indices being complex conjugate
numbers A > 0). On the surfacg s (A = 0) the stability indices are real with at least two of them equal
to each other. Along the curve where the two shegetaind p4 join the three stability indices are real and
equal.

The equations of the intersection curves between the above surfaces are found by substituting the constraints on
the stability indices, that every surface satisfies, to Eqgs. (42). For example, the equation of the line of intersection
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of the two planeg and p; is found by puttingh; = 2 andb, = —2 in Egs. (42). This substitution gives the
parametric equation of the line:

p1i2: (A,B,C)=(p,—1,-2p), peR (51)

The other curves of intersection are found in a similar way. Having in mind that the two subscripts denote the
number of the surfaces that intersect and R we get

p13: (A,B,C)=(@4+p,40+7,6p+8), (52)
p1a: (A, B,C)=(2+42p, p?>+4p +3,20°+4p + 4), (53)
p23: (A, B,C)=(—2+2p, p?> —4p +3,—2p% +4p — 4), (54)
p2a: (A,B,C)=(p—4,7—4p,6p—8), (55)
paai (A, B.C)=(p, 507 +3 F0° +20), (56)

The points of intersection of the above curves are
01=(02,-1,-49), 0r=(—2,-14), P1 = (6,15, 20), Py = (=6, 15, —20). (57)

In particular, curve®12, p13, p23intersect a1, curvespis, p14, p24intersect apo, curvespis, pi4, p34intersect
at P1 and curveos, p24, p34 intersect atPp. At point Q3 the values of the stability indices abg = 2, b = 2,
b3z = —2, while at pointQ, they areby = 2,by, = —2, b3 = —2, at pointP; they areb1 = 2, b2 = 2, b3 = 2 and
at point P, they areby = —2,by = —2,b3 = —2.

The surfacep 4 is tangent to plangs along the linepy3, while it intersects it along the curvye 4. In Fig. 6(a)
the planep; and the lower shegi, of p, are plotted. On plang; the curvespiz and p14 are shown along with
the pointP; at which the two curves become tangent. The spgés$ tangent to plang; along the section of line
p13 that corresponds tp < 2 in Eq. (52), and the sheet, is tangent to plang; along the section op13 with
p > 2, while p = 2 corresponds to poin?;. The sheep, intersects plang; along the section of curve:4 that
corresponds t@ < 2 in Eq. (53). The section g4 with p > 2 corresponds to the intersection of the plane
with the sheeps, while p = 2 corresponds to poire;.

In a similar way, surface, is tangent to plangy along the linep24, while it intersects it along the curve
p23. In Fig. 6(b) the planep, and the lower sheeps of p, are plotted. On plang» the curvesp,z and
p24 are shown along with the poinf, at which the two curves become tangent. The sheeis tangent to
plane po along the section of ling,4 that corresponds tp < —2 in Eq. (55), and the sheegis is tangent
to plane p, along the section op4 with p > —2, while p = —2 corresponds to poinP,. The sheetps
intersects plang- along the section of curves that corresponds tp < —2 in Eq. (54), while sheeps in-
tersects plang, along the section opo4 for p > —2. The valuep = —2 in Eq. (54) corresponds to point
Po.

The transition boundariep1, p2 and p, create 13 regions of different stability types, in agreement to
Eg. (21) forN = 3. These regions are shown in Fig. 7. Fig. 7(a) is produced by the superposition of the three
frames seen in Fig. 5. In Fig. 7(a) the regions of eight stability types are shown, in particular the regions of the
stability types:S1U2.0, S2U1,0, U1,041, U1.2, S1U1,1, S2Up 1, S1Up 2 and S1A1. In Fig. 7(b) the same portion of
the parameter spaceto the one shown in Fig. 7(a), is seen from a different point of view so that the regions of
the stability typed/, 1 andUg 141 are also visible. We remark that new types of instabilities are introduced in
Hamiltonian systems with four degrees of freedom and in particular the s U1 041 andUp 141 where
we have the coexistence of complex instability with stable and unstable configuration. The regidns aid
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A

100

Fig. 6. Intersections and tangencies of the plameand p» with the surfacep 4 in the three-dimensional parameter sp&ceith coordinates
the coefficientsA, B, C of the characteristic polynomial. (a) The plapgand the lower shegis of p4. The surfacep, is tangent to plane
p1 along the lineps3. In particular sheeps is tangent to plang; along the section of ling;3 starting from pointP; and towards smaller
values ofA (p < 2 in Eq. (52)), while at the rest part gfiz (0 > 2 in Eq. (52))p4 is tangent top;. The surfacep, intersects the plane
p1 along the curvepia. In particular sheep, intersectsp; along the section of curve;4 starting from pointP; and towards smaller values
of A (p < 2 in Eq. (53)) and sheets intersectsp; along the rest part op14 (0 > 2 in Eq. (53)). (b) The plang, and the lower sheet
pa of pa. The surfacep, is tangent to plang, along the linep,a. In particular sheeps is tangent top, along the section op24 starting
from point P, and towards smaller values df (0 < —2 in Eq. (55)), while at the rest part gh4 (0 > —2 in Eq. (55)) p4 is tangent to
p2. The surfacep 4 intersects the plang, along the curvepzs. In particular sheep, intersectsp, along the section of curvg,s starting
from point P, and towards smaller values d@f (0 < —2 in Eq. (54)) and shegbs intersectsp, along the rest part op23 (0 > —2 in
Eqg. (54)).

U3 are marked in Fig. 7(c). The region that corresponds to the stabilitylfyjpes located over the plang, and
below thep 4 surface, while the region @y 3 is located below the plary and over the surface,. The boundary

of the region that corresponds to the stability tyfaeis a rather complicated surface formed by the intersecting
surfaceypi, p2 andp, and it is shown in Fig. 7(d).

All the possible direct transitions between the different stability types, as well as the dimension of the cor-
responding transition boundary are reported in Table 3. The data of Table 3 can be found by using the infor-
mation provided in Table 2 or by examining the arrangement of the various stability regions seen in
Fig. 7.

From the data of Table 3 we see that certain transitions are not possible. For example, the tr&yigitior>
S1Up 2 cannot happen, since the corresponding regionS are not neighboring as seen in Fig. 7(a) and (b).
Some transitions are possible when very specific conditions are satisfied, since they correspond to the crossing of a
particular point inS, like the transitionSs — Uz o which is performed through poirf2. On the other hand, other
transitions are performed by the crossing of certain curves, like the tranSgtégy — U1.2 which is performed
by the crossing of lingy12 as seen in Fig. 7(a), or by the crossing of a surfacg, ilike for example the transition
SoUop.1 — S1Uop,2 since the two regions are separated by planas seen in Fig. 7(a). The region that corresponds
to the S3 type is directly connected to all other regions. Thus, the direct transition from the stabl&;dasany
unstable type is possible.
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(b)

() (d) B

10 A

Fig. 7. The regions of the 13 possible stability types of a Hamiltonian system with four degrees of freedom, in the three-dimensional parameter
spaceS with coordinates the coefficients, B, C of the characteristic polynomial. (a) The regions of the stability tyf1€% o, S2U1.0, U1,041,

Ui,2, S1U11, S2Uo1, $S1Uo,2 andS1A41. The portion of the parameter spaSés the same to the one seen in Fig. 5, using also the same point

of view. So the regions of the different stability types are produced by the superposition of the three frames of Fig. 5. (b) The same portion of
the parameter spaceto the one shown in frame (a), seen from a different point of view so that the regiéis @fndUp 141 are also visible.

The planeg1, p2 and the surfacegs, p4 are also marked. (c) A larger portion of the parameter sggacempared to frames (a) and (b) (same
portion to the one shown in Fig. 6 seen from the same point of view), where the spear-like regléns afid Up 3 are marked. The region

of Usz g is located over the plang, and below surface . It is confined between the section pf located over the plang, and the section

of sheetpz up to the linepy4 seen in Fig. 6(b), on whichs is tangent top,. The boundary ot/ o on planep; is the curvilinear triangular

region formed by poinP, and the sections gf24 andp,3 marked byp < —2 in Fig. 6(b). The region ol/g 3 is located below the plare; and

over the surface 4. The boundary ot/ 3 on planeps is the curvilinear triangular region formed by poit and the sections gf13 and p1a

marked byp > 2 in Fig. 6(a). (d) The stability regiofs is the one marked with bold lines. The region is confined by the planes, and the

sheetgs, ps. The sheeps is not plotted. The boundary 6% on p3 is the curvilinear triangle?; Q1 P> with sides the sections gfi3, p23 and

p3a marked by bold lines. The boundary §f on p4 is the curvilinear triangléP, Q2 P> with sides the sections 9f14, p24 and p34 marked by

bold lines. The boundary df; on p1 is the curvilinear triangle’; 01 02 with sides the sections gfi2, p13 and p14 marked by bold lines. The
boundary ofS3 on p3 is the curvilinear trianglé®, 01 Q2 with sides the sections gf12, p23 and p24 marked by bold lines.
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Table 3

The possible direct transitions between the 13 different stability types of a periodic orbit of a Hamiltonian system with four degrees of freedom.
The 13 stability types are listed in the first column and the first row of the table. If the direct transition between two stability types defined by
the column and the row of a cell is possible then the dimension of the corresponding transition boundary is reported in the cell: 2 for a surface,
1 for a curve and 0 for a point. If a particular transition is not possible the corresponding cell contains the mark “—". The cells of the diagonal
are empty since they do not represent any transition

Stability types Sz S2U10  S2Up1 S1Uz20  S1U1n SiUo2  S141 Uso  Uzx Uiz  Ups  Upodr  Upids

Ss 2 2 1 1 1 2 0 0 0 0 1 1
S2U10 2 1 2 2 0 1 1 1 1 - 2 0
SpUo1 2 1 0 2 2 1 - 1 1 1 0 2
S1U2,0 12 0 1 - 2 2 2 - -~ 1 1
S1U11 1 2 2 1 1 0 - 2 2 - 1 1
S1Uo.2 1 0 2 - 1 2 - 2 2 1 1
S141 2 1 1 2 0 2 1 1 1 1 2 2
Uso 0 1 — 2 - - 1 - - - 2 -
Uz 0 1 1 2 2 - 1 - - - - 2
Utz 0 1 1 - 2 2 1 -~ - -~ 2 -
Uos 0o - 1 - - 2 1 - - - 2
U1041 12 0 1 1 1 2 2 2 -
U141 1 0 2 1 1 1 2 - 2 - 2 -

5. Summary

We considered the problem of the stability of periodic orbits of autonomous Hamiltonian systen$ with
degrees of freedom or equivalently oN2imensional symplectic maps, wheMe is an integer withV > 1.
The stability of a periodic orbit is defined by the eigenvalues of the corresponding monodromy matrix, which
are given as roots of the characteristic polynomial (13), or equivalently by the values of the stability indices (14)
which are provided as roots of the reduced characteristic polynomial (15). The introduction of the stability indices
simplifies the mathematical formalism, since the order of the reduced characteristic polynomial is half the order of
the characteristic polynomial. The coefficients of the reduced characteristic polynomial are related to the stability
indices and to the coefficients of the characteristic polynomial through Egs. (16) and (17), respectively.

The results of our study can be summarized as follows:

(i) We introduce a new terminology for the different stability types that a periodic orbit of a Hamiltonian system
with N 41 degrees can exhibit. That terminology is perfectly suited for systems with many degrees of freedom,
since it provides in a clear way the configuration of the eigenvalues of the monodromy matrix on the complex
plane. The general form of a stability type is

S, UnA;, With n+m-+2[=N,

which means that couples of eigenvalues are on the unit cirelsgouples are on the real axis ahguartets
are on the complex plane but not on the unit circle and not on the real axis.

(ii) All the possibleU,, types are not identical, since a pair of negative real eigenvalues cannot become positive
under a continuous change of a parameter of the system. So, by taking into account the different configurations
of the eigenvalues that correspond to thg case, the introduced notation becomes

SnUnmym, Al with m1 + mo2 = m,

which means that there exigt; real negative pairs of eigenvalues angreal positive pairs of eigenvalues.
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(iii) The stability type of a periodic orbit is represented by a point in shelimensional parameter spaSewith

(iv)

v)

coordinates the coefficients of the characteristic polynomial. So different stability types correspond to different
regions of spacé&. The number of the different regions is given by Eq. (21).

We register all the possible direct transitions between different stability types. The diménsitthe hyper-
surface inS, which corresponds to a certain transition is an indicator of how probable this transition is. The
constraints on the stability indices that the transition

SnUnAp — Sn+6nUm+8mAl+61

introduces and the dimensidh of the corresponding transition hypersurfaceSimre provided in Table 1.

In this table the different arrangements of the eigenvalues fotthandU,, s, types have not been taken

into account. So the transitions registered in Table 1 can happen in the sense that there exists at least on
configuration of the eigenvalues, compatible to theandU,,+s, types, that allows the transition to occur.
Taking into account the possible different arrangements of the eigenvalues oy, thyge and using the
notation

Sn Uml,mzAl = [n, mai, ma, l]a

the possible direct transitions and the dimension of the corresponding transition hypersu§aaesifiound

by using repetitively the transition cases listed in Table 2, without using the same pair or quartet of eigenvalues
twice. An explicit algorithm for determining whether a transition is possible and if so, finding the dimension
of the corresponding hypersurfaceSris provided in Section 3.3.2.

We applied the new terminology of the stability types to the well-known cases of Hamiltonian systems with
two and three degrees of freedom, referring also to the various direct transitions between different stability
types as they arise from Tables 1 and 2. We also studied in detail the three-dimensional paramefotpace

a Hamiltonian system with four degrees of freedom or equivalently of a six-dimensional symplectic map. By
providing the equations of the boundary surfaces of the different stability regions, we define the reglons in
that correspond to all the possible instabilities not limiting ourselves in studying only the stablg;c@ike
arrangement of the various regions define the possible direct transitions between different stability types, in
agreement to the information provided in Tables 1 and 2. All the direct transitions as well as the dimension of
the corresponding transition boundary are reported in Table 3.
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