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Abstract

We study the stability of periodic orbits of autonomous Hamiltonian systems withN+1 degrees of freedom or equivalently
of 2N -dimensional symplectic maps, withN ≥ 1. We classify the different stability types, introducing a new terminology
which is perfectly suited for systems with many degrees of freedom, since it clearly reflects the configuration of the eigenvalues
of the corresponding monodromy matrix, on the complex plane. The different stability types correspond to different regions
of theN -dimensional parameter spaceS, defined by the coefficients of the characteristic polynomial of the monodromy
matrix. All the possible direct transitions between different stability types are classified, and the corresponding transition
hypersurface inS is determined. The dimension of the transition hypersurface is an indicator of how probable to happen is the
corresponding transition. As an application of the general results we consider the well-known cases of Hamiltonian systems
with two and three degrees of freedom. We also describe in detail the different stability regions in the three-dimensional
parameter spaceS of a Hamiltonian system with four degrees of freedom or equivalently of a six-dimensional symplectic
map. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 03.20.+i; 05.45.+b; 95.10.Ce
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1. Introduction

The stability of periodic orbits of high dimensional autonomous Hamiltonian systems (with more than three
degrees of freedom) and equivalently of high dimensional symplectic maps is a significant problem in nonlinear
dynamics having a variety of applications ranging from celestial mechanics (e.g. [1–4]) to chemical physics (e.g.
[5–7]). The problem has been studied in the past by a number of authors, and important results have been given
for systems with two and three degrees of freedom [8,9]. Due to the complexity of the problem it is inevitable to
restrict attention to low dimensions. Nevertheless, some work has been also done on systems with many degrees of
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freedom [10–12], but a general theory in dimensions higher than three is still lacking. Most of the activity so far was
focused on the derivation of stability boundaries for symplectic maps [10,12]. Howard and MacKay [10], based on
the observation that the introduction of the stability indices reduces the characteristic polynomial which gives the
eigenvalues of the monodromy matrix to a polynomial with half the original order, succeeded in obtaining results
for the stability boundaries of symplectic maps of dimension as high as eight.

The aim of the present paper is different. Since general results are difficult to get for the stability boundaries in
dimensions higher than eight, we restrict attention in classifying all the possible stability types in the general case of
a Hamiltonian system withN+1 degrees of freedom, which corresponds to a 2N -dimensional symplectic map. We
introduce a new terminology for all the possible stability types, which help us in studying the direct transitions
between these types.

The properties of periodic orbits of Hamiltonian systems with three degrees of freedom or equivalently of
four-dimensional symplectic maps, have been studied extensively (e.g. [13–24]). In such systems particular attention
has been given to complex instability (e.g. [25–31]), a type of instability that does not appear in systems with two
degrees of freedom. After having studied systems with three degrees of freedom, the next step towards understanding
instabilities in multidimensional systems is the case of four degrees of freedom. A four degrees of freedom system
is the simplest case where new different types of complex instability appear. So we study in detail the case of a
Hamiltonian system with four degrees of freedom which corresponds to a six-dimensional symplectic map. We note
that the stability parameter space of such systems is three-dimensional and can be visualized. The boundaries of all
the stability types are obtained helping us defining the various transitions not only from stability to instability but
also between different types of instabilities.

The paper is organized as follows. In Section 2 we review briefly the basic theory of stability of Hamiltonian
systems, giving definitions of many concepts like the monodromy matrix and the stability indices and providing
some basic formulae for these quantities. The results of the present paper are presented in Sections 3 and 4. In
particular in Section 3.1 we define the different stability types that are possible in the general case and we introduce
a new terminology for them. In Section 3.2 we study the case ofN + 1 degrees of freedom whenN is even or odd,
counting all the possible stability types. In Section 3.3 the direct transitions between different stability types are
studied. In Section 4 we apply the results of the previous two sections in some particular cases. For completeness
sake in Sections 4.1 and 4.2 we review the stability types that appear in Hamiltonian systems with two and three
degrees of freedom, respectively, while the complete study of the four degrees of freedom case is done in Section
4.3. Finally in Section 5 we summarize our results.

2. A quick reminder of the stability theory of Hamiltonian systems with N+1 degrees of freedom

One of the main motivations for studying the stability of periodic orbits of Hamiltonian systems is its great
significance for the dynamical behavior of the system. It is well known that non-periodic orbits near a stable
periodic orbit are ordered, i.e. their evolution in time is similar to the behavior of the periodic orbit, while the
unstable periodic orbits introduce chaotic behavior in the system.

Let us consider an autonomous Hamiltonian systemH0, not necessarily integrable, withN+1 degrees of freedom,
whereN is an integer withN ≥ 1, which is perturbed. Then its Hamiltonian function can be written as

H = H0 + εH1, (1)

whereε is the perturbation parameter. The equations of motion for this system can be expressed in the form

ẋ = −J · ∇H = −J · ∇(H0 + εH1), (2)
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with x = (q1, q2, . . . , qN+1, p1, p2, . . . , pN+1)
′ and

∇H =
(
∂H

∂q1
,
∂H

∂q2
, . . . ,

∂H

∂qN+1
,
∂H

∂p1
,
∂H

∂p2
, . . . ,

∂H

∂pN+1

)′
,

whereqi , i = 1,2, . . . , N + 1 are the generalized coordinates andpi , i = 1,2, . . . , N + 1 the conjugate momenta
and prime (′) denotes the transpose matrix. The matrixJ has the following block form:

J =
(

0n −In
In 0n

)
, (3)

whereIn is then× n identity withn = N + 1 and0n is then× n matrix with all its elements equal to zero.
The linear stability of a periodic orbit of this system with periodT is determined by the solution of the linearized

equations

J · ξ̇ = (P0 + εP1) · ξ = P · ξ, (4)

whereξ is a vector denoting the deviation from the given periodic orbit in the (2N + 2)-dimensional phase space
of the system and represented by a(2N + 2)× 1 matrix,P = P0 + εP1 is the Hessian matrix of the Hamiltonian
(1) calculated on the periodic orbit the stability of which we study. The elements of matrixP

Pij = ∂2H

∂xi∂xj
, i, j = 1,2, . . . ,2N + 2 (5)

areT -periodic functions of time since the RHS of Eq. (5) is calculated for theT -periodic orbit. Eqs. (4) are the
so-called variational equations of the system for the particular periodic orbit. A(2N + 2)× (2N + 2)matrix whose
individual columns consist of 2N + 2 linearly independent solutions of Eqs. (4) is called a fundamental matrix of
solutions of the variational equations (4). The fundamental matrixX(t) whose solutions correspond to the initial
conditions

X(0) = I2N+2, (6)

gives the evolution of the deviation vectorξ for t = κT , κ ∈ N∗ through the relation

ξ(κT ) = [X(T )]κ · ξ(0). (7)

The matrix

A = X(T ) (8)

is called the monodromy matrix and satisfies the symplectic condition [32]

A′ · J · A = J. (9)

The stability type of the periodic orbit is determined by knowing the nature of the eigenvalues of the matrixA.
Due to the symplectic condition (9) and due to the fact that the matrix coefficients are real, the eigenvalues of matrix
A have the following properties: ifλ is an eigenvalue then 1/λ is also an eigenvalue, and ifλ is an eigenvalue the
complex conjugateλ∗ is also an eigenvalue. These properties show that the eigenvaluesλ = 1 andλ = −1 are
always double eigenvalues and that complex eigenvalues with modulus not equal to 1 always appear in quartets.

When all the eigenvalues are on the unit circle the corresponding periodic orbit is stable. If there exist eigenvalues
not on the unit circle the periodic orbit is unstable. The different types of instabilities will be studied in detail in the
next section.
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An interesting question is the following: assume that forε = 0 we know the eigenvalues of the corresponding
monodromy matrixA0. What are the possibilities for the eigenvalues of the perturbed matrixA, which corresponds
to the perturbed system (1) under the symplectic constraint? This question has been answered in the 1950s by Krein
[33], Gelfand and Lidskii [34] and Moser [35]. The theory they developed is presented in detail in [32]. According
to this theory the only possible movement of simple eigenvalues on the unit circle, due to perturbation, is movement
on the unit circle, which means that the stability type of the periodic orbit does not change. On the other hand,
multiple eigenvalues on the unit circle have two possibilities. Either they move on the unit circle or off the unit
circle. The second case is called complex instability. Finally, if a double eigenvalue equals+1 or−1 then under the
effect of perturbation these eigenvalues either remain on the unit circle or move on the real axis off the unit circle.
The latter case is called in general instability.

An important quantity in determining the fate of eigenvalues under perturbation is the so-called “kind” of the
eigenvalues. Letg be an eigenvector corresponding to the simple eigenvalueλ on the unit circle, then we define the
inner product

〈g, g〉 = i(Jg g), (10)

where(·, ·) denotes the usual inner product. Thenλ is called an eigenvalue of the first kind if〈g, g〉 > 0 and of the
second kind if〈g, g〉 < 0. Let nowλ be anr-tuple eigenvalue on the unit circle andg a corresponding eigenvector.
If 〈g, g〉 > 0 for any eigenvector thenλ is called anr-tuple eigenvalue of the first kind and if〈g, g〉 < 0 then
λ is an r-tuple eigenvalue of the second kind. Eigenvalues of the first and second kinds are said to be definite.
If on the other hand, there exists an eigenvectorg �= 0 such that〈g, g〉 = 0 then the eigenvalue is said to be
indefinite or of mixed kind. In this case there exist an eigenvectorg so that〈g, g〉 is positive and another one
so that〈g, g〉 is negative. The well-known theorem of Krein–Gelfand–Lidskii [32] states that a linear system is
strongly stable (i.e. no small perturbation may turn it unstable) if and only if all eigenvalues lie on the unit circle and
are definite.

From the above theory we see that if we have only simple eigenvalues on the unit circle then it is impossible to
have instability due to small perturbation. The only way to have instability by perturbing the system is to have two
simple eigenvalues of different kinds colliding to create a double eigenvalue. Then instability may occur.

A few remarks on the connection of Hamiltonian systems with symplectic maps are necessary. Since autonomous
Hamiltonian systems are conservative, the constancy of the Hamiltonian function (1) introduces a constraint of the
form

H(q1, q2, . . . , qN+1, p1, p2, . . . , pN+1) = c, (11)

wherec is a constant value. This constraint fixes an eigenvalue to be equal to 1 and so by the symplectic nature
of the problem there must be a second eigenvalue equal to 1. Thus, there are only 2N non-constant eigenvalues.
So we can constrain the study of aN + 1 degrees of freedom Hamiltonian systems to a 2N -dimensional sub-
space of the general phase space. This subspace is obtained by the well-known method of the Poincaré surface of
section (PSS). Generally speaking we can assume a PSS of the formqN+1 = constant. Then only the variables
q1, q2, . . . , qN , p1, p2, . . . , pN are needed to describe the evolution of an orbit on the PSS, sincepN+1 can be found
by solving Eq. (11). The corresponding monodromy matrix of the periodic orbit is also symplectic and will be de-
noted asL. In this sense aN+1 degrees of freedom Hamiltonian system corresponds to 2N -dimensional symplectic
map.

The eigenvalues ofL define the stability of the corresponding periodic orbit. These eigenvalues are roots of the
characteristic polynomial

P(λ) = det(L − λI2N), (12)
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which is a palindrome of the form [10]

P(λ) = λ2N − AN−1λ
2N−1 + AN−2λ

2N−2 + · · · + (−1)NA0λ
N + · · · − AN−1λ+ 1. (13)

The coefficients ofP can be easily expressed as functions of the elements of matrixL. The characteristic polynomial
(13) can be written in a simpler form in terms of the stability index

b = 1

λ
+ λ. (14)

In particular it becomes

Q(b) = A′
0b
N − A′

1b
N−1 + · · · + (−1)N−1A′

N−1b + (−1)NA′
N. (15)

The polynomialQ(b) is called the reduced characteristic polynomial. One of the main advantages of introducing
the stability indicesbi , i = 1,2, . . . , N is that they solve a polynomial of half the original order, i.e. a polynomial
equation of orderN . This turns the computational problem into a much more tractable one.

The coefficientsA′
i , i = 0,1,2, . . . , N of Q(b) are related to the rootsbi , i = 1,2, . . . , N by the well-known

formulae

A′
0 = 1,

A′
1 = ∑N

i=1 bi,

A′
2 = ∑

i<j bibj ,

...

A′
N = b1b2, . . . , bN .

(16)

SoA′
i is the sum of all possiblei-tuples ofb1, . . . , bn. The connection between the coefficientsAj ,j = 0,1, . . . , N−1

of the characteristic polynomial (13) and the coefficientsA′
i , i = 0,1,2, . . . , N of the reduced characteristic poly-

nomial (15) can be found using some algebra and induction. In particular we get

AN−i =
[i/2]∑
u=0

(
N − i + 2u

u

)
A′
i−2u, i = 1,2, . . . , N, (17)

where [i] denotes the integer part ofi and(
i

j

)

denotes the combinations ofi over j . The stability type of a periodic orbit is represented by a point in the
N -dimensional parameter spaceS whose coordinates are the coefficientsA0, A1, . . . , AN−1 of the characteris-
tic polynomialP(λ).

3. Stability types of Hamiltonian systems with N+1 degrees of freedom

As explained in the previous section the stability of a periodic orbit in a Hamiltonian system withN + 1 degrees
of freedom can be studied in the 2N -dimensional reduced phase space using the method of the Poincaré surface
of section. In this sense the Hamiltonian system corresponds to a 2N -dimensional symplectic map. In the present
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section we study in detail all the possible stability types that can occur in such a system and the possible transitions
between these types.

3.1. Terminology of the possible stability types

The stability type of a periodic orbit is determined by the values of the eigenvalues of the characteristic polynomial
(13). Equivalently the stability indicesbi , i = 1,2, . . . , N (Eq. (14)) can be used to indicate the stability of the orbit
in the following way:

(i) The caseb ∈ (−2,2) corresponds to stability withλ and 1/λ complex conjugate numbers on the unit circle.
In this case we say that the orbit is stable (S).

(ii) The caseb ∈ (−∞,−2) ∪ (2,∞) corresponds to instability withλ real. In this case we say that the orbit is
unstable (U ). In particular forb > 2 we have two real positive eigenvalues, one (e.g.λ) greater than 1 and
the other 1/λ smaller than 1. Forb < −2 we haveλ < −1 and−1 < 1/λ < 0. We remark that these two
cases are equivalent regarding the stability character of the periodic orbit, but not completely identical since a
positiveb cannot become negative under a continuous change of a parameter of the system.

(iii) The caseb ∈ C−R corresponds to complex instability (∆). In this case we have four non-real eigenvalues not
laying on the unit circle, forming two pairs of inverse numbers and two pairs of complex conjugate numbers
corresponding to two complex conjugate stability indices. Two of the eigenvalues are inside the unit circle
while the other two are outside it.

All the above cases are shown in Fig. 1.
In order to describe all the possible stability types of a(N + 1)-dimensional Hamiltonian system, we introduce

now the following terminology:

Definition 1. We say that the orbit has an “n-tuple stability” if 2n eigenvalues are on the unit circle. This stability
type is denoted asSn.

Fig. 1. Configuration of the eigenvalues on the complex plane, with respect to the unit circle, for the stable (S), unstable (U ) and complex
unstable (∆) cases. In every caseb is the corresponding stability index. We remark thatλ∗ denotes the complex conjugate ofλ.
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Definition 2. We say that the orbit has an “m-tuple instability” if 2m eigenvalues are on the real axis. This stability
type is denoted asUm.

Definition 3. We say that the orbit has an “l-tuple complex instability” if 4l eigenvalues are on the complex plane
but not on the unit circle and the real axis. This stability type is denoted as∆l .

As mentioned above all theUm types are not identical due to the different arrangements of the signs of the
stability indices. In most applications, when the stability type of a periodic orbit is needed, researchers do not take
into account the arrangement of the stability indices on the real axis in the case of instability, but in many cases
this is necessary, like for example in finding the possible transitions between different stability types. For a detailed
study of the different stability types the following definition is needed.

Definition 4. We say that the orbit has an “(m1,m2)-instability” if its stability type isUm with m = m1 +m2 and
2m1 eigenvalues are negative and 2m2 positive. This stability type is denoted asUm1,m2.

In the general case, a periodic orbit of a Hamiltonian system withN+1 degrees of freedom, or of a 2N -dimensional
symplectic map, has the stability typeSnUm∆l (or SnUm1,m2∆l if we want to be more specific) where the integers
n,m = m1 +m2 andl satisfy the inequalities

0 ≤ n ≤ N, 0 ≤ m ≤ N, 0 ≤ l ≤ [N/2], (18)

with the constraint

n+m+ 2l = N. (19)

We note that a periodic orbit is stable only when its stability type isSN . In all other cases the orbit is unstable
since there exist eigenvalues not on the unit circle.

3.2. Counting the possible stability types of Hamiltonian systems with even and
odd number of degrees of freedom

In order to count all the different stability typesSnUm∆l that a Hamiltonian system withN+1 degrees of freedom
can exhibit, one must count all the possible combinations ofn,m andl. From Eq. (18) we see that for a givenN , l
can take the values 0,1, . . . , [N/2]. For a given value ofl,m can take the values 0,1, . . . , N −2l. Then the value of
n is determined by Eq. (19). So the numberN of all the possible stability typesSnUm∆l of a Hamiltonian system
with N + 1 degrees of freedom is

N =
[N/2]∑
l=0

N−2l∑
m=0

1 =
{ 1

4(N + 1)(N + 3), forN + 1 even,

1
4(N + 2)2, forN + 1 odd,

(20)

since the value of [N/2] is (N − 1)/2 forN + 1 even andN/2 forN + 1 odd.
The different stability types correspond to different regions of theN -dimensional parameter spaceS whose

coordinates are the coefficientsA0, A1, . . . , AN−1 of the characteristic polynomialP(λ). These coefficients can
be expressed as functions of the elements of the monodromy matrixL and through Eq. (17) as functions of the
coefficientsA′

0, A
′
1, . . . , A

′
N of the reduced characteristic polynomialQ(b). The stability typeUm corresponds to

m + 1 different regions of the parameter space since there existm + 1 different arrangements of the signs of the
stability indicesbi on the real axis. In particularUm corresponds to the casesU0,m, U1,m−1, U2,m−2, . . . , Um,0. So
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the numberN ∗ of different stability regions in theN -dimensional parameter spaceS is

N ∗ =
[N/2]∑
l=0

N−2l∑
m=0

(m+ 1) =
{ 1

24(N + 1)(N + 3)(2N + 7), forN + 1 even,

1
24(N + 2)(N + 4)(2N + 3), forN + 1 odd.

(21)

A significant difference between(N+1)-dimensional Hamiltonian systems with odd or even degrees of freedom
is that in the former case the system can be completely complex unstable (∆N/2), while in the latter this is not
possible since the maximum value ofl is (N − 1)/2.

3.3. Transitions between different stability types

In Fig. 2 the basic transitions between different stability types are shown schematically. These transitions are as
follows:

(i) The transitionS1 → U1. This transition happens when two eigenvalues move on the unit circle, as a parameter
of the Hamiltonian system changes, coincide onλ = 1 and split along the positive real axis (tangent bifurcation)
(Fig. 2(a)). The corresponding stability index is positive and increases throughb = 2. The final stability type
isU0,1. A similar transition from stability to instability, happens when the two eigenvalues leave the unit circle
passing though the pointλ = −1 (period-doubling bifurcation). The stability index decreases throughb = −2
and the final state isU1,0.

(ii) The transitionS2 → ∆1. This transition happens when two pairs of eigenvalues moving on the unit circle collide
and split off it, at a point whereλ2 �= 1 (Fig. 2(b)). The corresponding real stability indices−2 < b1 < 2,
−2< b2 < 2 become equalb1 = b2 and then become complex.

(iii) The transitionU2 → ∆1. This transition happens when two real positive (or negative) pairs of eigenvalues
become equal and move on the complex plane, leaving the real axis and staying away from the unit circle
(Fig. 2(c)). The corresponding real stability indicesb1 > 2, b2 > 2 (or b1 < −2, b2 < −2) become equal
b1 = b2 and then become complex. So we have the transitionU0,2 → ∆1 (orU2,0 → ∆1). It is evident from
the configuration of the eigenvalues on the plane, that the transitionU1,1 → ∆1 is not possible, since the two
stability indices cannot become equal.

(iv) The transitionS1U1 → ∆1. This transition happens when two pairs of eigenvalues coincide onλ = 1 (or
λ = −1) and split on the complex plane, staying away from the unit circle. The pair corresponding to theS1

case was initially on the unit circle, while, the one corresponding to theU1 case was on the real positive (or
negative) axis (Fig. 2(d)). The stability indices that were real initially−2< b1 < 2,b2 > 2 (or−2< b1 < 2,
b2 < −2) became equalb1 = b2 = 2 (or−2) and then complex. This transition is of the formS1U0,1 → ∆1

(or S1U1,0 → ∆1).

We remark that the above transitions can also happen following the opposite directionU1 → S1, ∆1 → S2,
∆1 → U2 and∆1 → S1U1.

As already mentioned the stability type of a periodic orbit of a Hamiltonian system is represented by a pointA in
the correspondingN -dimensional parameter spaceS. The coordinates ofA are the coefficients of the characteristic
polynomialP(λ) so,A ≡ (A0, A1, . . . , AN−1). As a parameter of the Hamiltonian system changes the coefficients
of the characteristic polynomialP(λ) also change, causing possible changes in the stability type of the periodic
orbit and the motion of pointA in S. As a result of that the stability indicesbi , i = 1,2, . . . , N change too.

The above described transitions happen when certain constraints on the values of the stability indices, are valid.
These constraints define a transition hypersurface in the parameter spaceS, the crossing of which, by pointA,
corresponds to the change of the stability type of the orbit. The equation of this hypersurface is obtained by
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Fig. 2. Schematic representations of the configuration of the eigenvalues on the complex plane for the basic transitions between different stability
types, where one or two pairs of eigenvalues are involved. In every panel the unit circle is also plotted. (a)S1 → U1. Two eigenvalues move on
the unit circle, coincide onλ = 1 and split along the positive real axis. (b)S2 → ∆1. Two pairs of eigenvalues move on the unit circle, collide
and split off it at a point whereλ2 �= 1. (c)U2 → ∆1. Two real pairs of eigenvalues coincide and move on the complex plane, but not on the
unit circle. (d)S1U1 → ∆1. A pair of eigenvalues on the unit circle collide with a pair of real eigenvalues onλ = 1 and split on the complex
plane staying away from the unit circle and the real axis.

substituting the constraints on the stability indicesbi in Eqs. (16) and (17). For instance the transitionS1 → U1

(Fig. 2(a)) happens whenb passes throughb = 2 forS1 → U0,1 or b = −2 forS1 → U1,0, which corresponds toA
crossing the(N − 1)-dimensional hypersurface inS produced by puttingb = 2 orb = −2 in Eqs. (16) and (17). In
a similar wayS2 → ∆1 (Fig. 2(b)) andU2 → ∆1 (Fig. 2(c)) happen when pointA crosses the(N −1)-dimensional
hypersurface produced byb1 = b2, while the transitionS1U1 → ∆1 (Fig. 2(d)) happens whenA crosses the
(N − 2)-dimensional hypersurface produced byb1 = b2 = 2 orb1 = b2 = −2.
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We remark that all the possible constraints are of the formb = +2, b = −2, b1 = b2, b1 = b2 = +2 and
b1 = b2 = −2. These constraints define through Eqs. (16) and (17) the dimensionality of the corresponding
hypersurface. Every constraint reduces the dimensionality of the hypersurface by constant number. In particular,
the constraintsb = +2, b = −2, b1 = b2 decrease the dimensionality of the hypersurface they define by 1, while
the constraintsb1 = b2 = +2, b1 = b2 = −2 by 2.

3.3.1. Direct transitions of the form SnUm∆l → Sn+δnUm+δm∆l+δl
We consider now the problem of finding all the possible direct transitions between different stability types and the

dimension of the corresponding transition hypersurface inS. The different possible arrangements of the eigenvalues
of theUm case makes this problem complicated, since certain arrangements of the eigenvalues can even make a
transition impossible. As an example we remind the already mentioned case ofU2 → ∆1. In this caseU2,0 → ∆1

andU0,2 → ∆1 can happen when pointA crosses the(N−1)-dimensional hypersurface produced by the constraint
b1 = b2, while the transitionU1,1 → ∆1 is impossible. As a first step we find if and how a transition of the form

SnUm∆l → Sn+δnUm+δm∆l+δl, (22)

whereδn, δm, δl, are the changes in the multiplicity ofS,U and∆, can happen. By this we mean that there exist at
least one configuration of the eigenvalues, compatible with theUm andUm+δm types, which allows the transition
to happen.

Since both the initial (SnUm∆l) and the final (Sn+δnUm+δm∆l+δl) stability types satisfy the constraint (19) we
conclude thatδn, δm, δl satisfy

δn+ δm+ 2δl = 0. (23)

So the constraints (18), (19) and (23), define all the possible direct transitions of the form (22) of a Hamiltonian
system withN + 1 degrees of freedom.

The different arrangements of the eigenvalues, influence the exact form of the constraints that define the hyper-
surface inS, which corresponds to the transition (22). For example, the transitionS1 ↔ U1 introduce the constraint
b = 2 orb = −2, which decreases the dimensionality of the hypersurface by 1, with respect to the dimension ofS.
In order to simplify the study of the transitions we consider equivalent the constraintsb = +2,b = −2, in the sense
that they are of the same form and have the same effect on the dimensionality of the hypersurface that represents
the transition in the parameter spaceS.

Based on the simple transitions shown in Fig. 2 we find the constraints on the stability indicesbi that define the
corresponding transition hypersurface in the parameter spaceS. In particular we have the two cases seen in Table 1:

(i) δn · δm ≤ 0. In this case the multiplicity ofS or U does not change or if both of them change the changes
have different signs. The changeδl is found from Eq. (23). We distinguish the following cases:

Table 1
The number of different kinds of constraints and the dimensionD of the corresponding transition hypersurface in theN -dimensional parameter
spaceS, for the possible transitionsSnUm∆l → Sn+δnUm+δm∆l+δl

Case Number of constraints D

b1 = b2 b1 = ±2 b1 = b2 = ±2

(i) δn · δm ≤ 0 |δl| |δl + δn| − |δl| 0 N − |δl + δn|
(ii(a)) δn · δm > 0 with δn, δm even |δl| 0 0 N − |δl|
(ii(b)) δn · δm > 0 with δn, δm odd |δl| − 1 0 1 N − |δl| − 1
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(a) If δm = 0 Eq. (23) givesδn = −2δl, which means that|δl| quartets of eigenvalues move from the unit
circle to the complex plane, but not on the real axis (or vice versa), following|δl| transitions of the form
seen in Fig. 2(b). These transitions introduce|δl| constraints of the formb1 = b2.

(b) If δn = 0 we getδm = −2δl, which means that|δl| quartets of eigenvalues move from the real axis to
the complex plane, but not on the unit circle (or vice versa), following|δl| transitions of the form seen in
Fig. 2(c). These transitions introduce|δl| constraints of the formb1 = b2.

(c) If δn · δm < 0 andδl = 0 we get from Eq. (23)δn = −δm, which means that|δn| pairs of eigenvalues
move from the unit circle to the real axis (or vice versa), following|δn| transitions of the form seen in
Fig. 2(a). These transitions introduce|δn| constraints of the formb = 2 orb = −2.

(d) If δn · δm < 0 andδl �= 0 thenδl has the same sign withδn or δm. If δn · δl > 0 the eigenvalues come
from (or go to) the real axis, following|δn| transitions of the form of Fig. 2(a) and|δl| transitions of
the form of Fig. 2(c). These transitions introduce|δn| constraintsb = ±2 and|δl| constraintsb1 = b2,
respectively. Ifδm ·δl > 0 the eigenvalues come from (or go to) the unit circle, following|δm| transitions
of the form of Fig. 2(a) and|δl| transitions of the form of Fig. 2(b). These transitions introduce|δm|
constraintsb = ±2 and|δl| constraintsb1 = b2, respectively.

One can easily check that all the above transitions introduce|δl+ δn| − |δl| constraints of the formb = ±2
(note that always|δl + δn| = |δl + δm|) and|δl| constraints of the formb1 = b2. All these constraints are
independent to each other since they refer to different stability indices. So the dimensionD of the corresponding
transition hypersurface is

D = N − |δl + δn|. (24)

(ii) δn · δm > 0. In this case the multiplicity of bothS andU increase (or decrease) leading to decrement (or
increment) of the multiplicity of∆. This means that eigenvalues come from (or go to) the complex plane in
quartets. From Eq. (23) we haveδn+ δm = −2δl. We distinguish the following cases:
(a) If δn andδm are even, the transition happens as seen in cases (b) and (c) of Fig. 2. So|δl| constraints of

the formb1 = b2 are introduced and the dimensionD of the corresponding transition hypersurface is

D = N − |δl|. (25)

(b) If δn andδm are odd then one transition of the form shown in Fig. 2(d) is needed. Thus, we get|δl| − 1
constraints of the formb1 = b2 and 1 constraint of the formb1 = b2 = ±2. The dimensionD of the
transition hypersurface is

D = N − |δl| − 1. (26)

From the above analysis it is evident that the direct transition between any two stability types permissible by
Eqs. (18) and (19) is possible. The dimensionD of the transition hypersurface given by Eqs. (24)–(26) is the maximal
possible in the sense that any particular arrangement of the eigenvalues ofUm andUm+δm which is compatible with
the transition (22) is performed (if it happens at all) by the crossing of aM-dimensional hypersurface with

M ≤ D. (27)

The dimensionD of the hypersurface which corresponds to a certain transition is an indicator of how probable this
transition is, or in other words how specific the parameters that influence the stability of an orbit must be in order
for this transition to happen. For example, the transitionSN → UN , that destabilizes a fully stable orbit making
it fully unstable, is done when the pointA (which represents the stability state of the orbit in the parameter space
S) passes through a specific point inS. In this case we haveδn = −N andδm = N and from Eq. (24) we get
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Fig. 3. Simple transitions between different stability types where one or two real and negative pairs of eigenvalues become positive, changing
the distribution of the eigenvalues in theUm stability type without changingm. (a)S1U1,0 → S1U0,1. Two real negative eigenvalues move on
the unit circle passing troughλ = −1 while simultaneously two eigenvalues from the unit circle pass fromλ = 1 and split along the positive real
axis. (b)U2,0∆1 → U0,2∆1. Two pairs of negative real eigenvalues coincide on the real axis and split on the complex plane, staying away from
the unit circle, while simultaneously four complex eigenvalues, not laying on the unit circle, fall on the real positive axis and split remaining on
it.

D = 0. So, this transition is performed when the parameters of the dynamical system have very specific values, in
order for pointA to pass through a particular point in theN -dimensional spaceS. On the other hand, the transition
SN → SN−1U1 is more easily performed, since it happens when the pointA crosses a transition hypersurface of
dimensionN − 1 as it can be easily seen from Eq. (24).

3.3.2. Direct transitions of the form SnUm1,m2∆l → Sn′Um′
1,m

′
2
∆l′

In order to study the possible transitions between different stability types, taking into account the different
arrangements of the eigenvalues inUm, we must consider transitions that change the arrangement of the eigenvalues
in Um in addition to the ones described in Fig. 2. Simple transitions that change the internal distribution of the
eigenvalues in theUm stability type are seen in Fig. 3. In particular in Fig. 3(a) we see the transitionS1U1,0 →
S1U0,1, which happens when two real negative eigenvalues move on the unit circle passing troughλ = −1 and
simultaneously two eigenvalues from the unit circle pass fromλ = 1 and split along the positive real axis. The
stability indices become simultaneouslyb1 = −2 andb2 = 2. So the transfer of a pair of real eigenvalues from
negative to positive values (and vice versa) is done through another pair initially located on the unit circle. In order
to transfer two pairs of real eigenvalues from negative to positive values (and vice versa) we perform the above
transition twice, which means that two pairs of eigenvalues on the unit circle are needed. In this case we have
S2U2,0 → S2U0,2 and the introduced constraints areb1 = b2 = −2 andb3 = b4 = 2. Another way to perform
the same transfer of eigenvalues is through a quartet of eigenvalues corresponding to case∆1. In particular we can
haveU2,0∆1 → U0,2∆1 as seen in Fig. 3(b). In this case two pairs of negative real eigenvalues coincide on the real
axis and then move on the complex plane but not on the unit circle, while simultaneously the four eigenvalues that
correspond to∆1, fall on the real positive axis and split remaining on it. So we have the constrainsb1 = b2 < 0
andb3 = b4 > 0 which are more general than the constrainsb1 = b2 = −2 andb3 = b4 = 2 we get for
the transitionS2U2,0 → S2U0,2. This means that the transition hypersurface which corresponds to the transition
S2U2,0 → S2U0,2 is a subset of the hypersurface which corresponds toU2,0∆1 → U0,2∆1.
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Table 2
The 10 possible simple transitions of the stability typeSnUm1,m2∆l ≡ [n,m1,m2, l] to the final stability types listed, when only one or two
pairs of eigenvalues are transferred. Any other general transition can be decomposed in successive applications of the transitions shown in this
table, taking care of not using the same eigenvalues twice. The constraints on the values of the stability indices that any particular transition
introduces are registered, as well as the decrementd of the dimensionality of the corresponding transition hypersurface

Case Final type Constraints d

1 [n,m1 ∓ 2,m2, l ± 1] b1 = b2 1
2 [n,m1,m2 ∓ 2, l ± 1] b1 = b2 1
3 [n∓ 1,m1 ± 1,m2, l] b1 = −2 1
4 [n∓ 1,m1,m2 ± 1, l] b1 = 2 1
5 [n∓ 1,m1 ∓ 1,m2, l ± 1] b1 = b2 = −2 2
6 [n∓ 1,m1,m2 ∓ 1, l ± 1] b1 = b2 = 2 2
7 [n,m1 ∓ 1,m2 ∓ 1, l ± 1] b1 = 2, b2 = −2 andb3 = 2 or−2, n ≥ 1 3
8 [n,m1 ∓ 2,m2 ± 2, l] b1 = b2, b3 = b4, l ≥ 1 2
9 [n,m1 ∓ 1,m2 ± 1, l] b1 = −2, b2 = 2, n ≥ 1 2

10 [n∓ 2,m1,m2, l ± 1] b1 = b2 1

Based on the cases described in Figs. 2 and 3, and using for simplicity the notation

SnUm1,m2∆l ≡ [n,m1,m2, l], (28)

we register in Table 2, all the possible transitions which involve one or two pairs of eigenvalues. In cases 1 and 2
four negative or positive real eigenvalues move from the real axis to the complex plain, but not on the unit circle
(or vice versa) following transitions of the form seen in Fig. 2(c). These transitions introduce ab1 = b2 constraint
which decreases the dimensionality of the corresponding transition hypersurface byd = 1. In cases 3 and 4 a pair of
negative or positive eigenvalues move from the real axis to the unit circle (or vice versa) following transitions of the
form seen in Fig. 2(a). These transitions introduce ab = −2 orb = 2 constraint, respectively, withd = 1. In cases
5 and 6 a pair of negative or positive real eigenvalues and a pair of eigenvalues located initially on the unit circle
move to the complex plain, staying away from the unit circle and the real axis (or vice versa), following transitions
of the form seen in Fig. 2(d). These transitions introduce ab1 = b2 = −2 orb1 = b2 = 2 constraint, respectively,
with d = 2. In case 7 a pair of negative and a pair of positive real eigenvalues move on the complex plain staying
away from the unit circle and the real axis (or vice versa). In order for this transition to happen a pair of eigenvalues
on the unit circle is needed. This pair goes to the real negative (or positive) axis, following a transition similar to
the one of Fig. 2(a), introducing the constraintb = −2 (or b = 2). Simultaneously four eigenvalues come from
the complex plain, coincide at pointλ = 1 (or λ = −1) and one pair split on the real positive (or negative) axis
while the other move on the unit circle (opposite transition to the one seen in Fig. 2(d)). This transition introduce
the constraintb1 = b2 = 2 (or b1 = b2 = −2). So in case 7 of Table 2 we haved = 3. In case 8 two pairs and
in case 9 one pair of real eigenvalues change their position inUm, following the transitions of Fig. 3(b) and (a),
respectively. In case 8 a quartet of eigenvalues on the complex plain and in case 9 a pair of eigenvalues on the real
axis are needed. In both cases we haved = 2. In case 10 two pairs of eigenvalues move from the unit circle to the
complex plain (or vice versa) following the transition of Fig. 2(b). In this case a constraintb1 = b2 is introduced,
sod = 1.

When a transition between different stability types occurs pairs and/or quartets of eigenvalues are simultaneously
transferred between theS, U and∆ types. The main difficulties in studying these transitions are the different
arrangements of the eigenvalues inUm and the fact that eigenvalues come from (or go to)∆l in quartets. The
transitions in Table 2 are ordered by taking into account these difficulties. The first cases listed are simple cases
with d = 1. Som1 orm2 change in cases 1 and 2 by changingl and in cases 3 and 4 by changingn. In cases 5–7m1
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or/andm2 change by moving a quartet of eigenvalues from∆l , in a more complicated way sinced > 1. In cases 8
and 9m1 andm2 change whilen andl remain unchanged. In the final case 10m1 andm2 do not change, whilel
andn do.

In order to determine if a transition from an initial stability type [n,m1,m2, l] to a final type [n′,m′
1,m

′
2, l

′] is
possible, and also find the dimension of the corresponding transition hypersurface inS, we decompose the general
transition in several simple transitions from the ones registered in Table 2, taking care of not using the same pair
or quartet of eigenvalues twice. Every time one of the transitions of Table 2 is used the corresponding constraint
reduces the dimensionality of the hypersurface byd. So, the procedure for finding the dimension of the transition
hypersurface can be described as follows. We change the initial stability type [n,m1,m2, l] applying case 1 of
Table 2 as many times as possible. Then we change the resulting stability type applying case 2 of Table 2 as many
times as possible and so on. In performing these steps we take into account the following rules:

(i) The quantitiesδn = n′ − n, δm1 = m′
1 − m1, δm2 = m′

2 − m2, δl = l′ − l must keep their initial sign or
become equal to 0.

(ii) If δn = 0 the cases of Table 2 that changen cannot be applied. The same holds forδm1, δm2 andδl.
(iii) Any step is performed only if it brings the stability type closer to its final form in the sense that the quantity

Σδ = |δn| + |δm1| + |δm2| + |δl| decreases.
(iv) Any step is performed only if the pairs or quartets of eigenvalues involved have not been used previously.
(v) The procedure stops ifΣδ = 0, which means that the final stability type has been reached and the general

transition is possible. If we reach at the bottom of Table 2, apply case 10 andΣδ �= 0 then the general transition
is not possible.

The following simple example clarifies the use of Tables 1 and 2. We consider a Hamiltonian system with six
degrees of freedom so thatN = 5 and the general transitionS1U2∆1 → S1U4. Using Table 1 and the fact that
δn = 0, δm = 2, δl = −1, we conclude that there exist at least one arrangement of the eigenvalues that makes this
transition possible, through a hypersurface with maximum dimensionD = 4 (Eq. (24)). For example, the transition

[1(1),0(0),2(2),1(1)] → [1(1),0(0),4(2),0(0)]

can happen following case 2 of Table 2. Case 1 of Table 2 cannot be applied since it is against rule (ii). This transition
is performed in the five-dimensional parametric spaceS, through a four-dimensional hypersurfaceF1 produced
by the constraintb1 = b2. We note that in the parentheses beside the indices we register the number of pairs (or
quartets for thel index) of eigenvalues that can be moved, in order to easily check the validity of rule (iv).

Another arrangement of the eigenvalues compatible with the general form of the transition is

[1,2,0,1] → [1,1,3,0].

This transition can be performed by applying successively cases 2 and 9 of Table 2, i.e.

[1(1),2(2),0(0),1(1)] → [1(1),2(2),2(0),0(0)] → [1(0),1(1),3(0),0(0)].

All the other cases cannot be applied since they are against rule (iii) (cases 1, 8) and rule (ii) (cases 3–7). The
corresponding constraints areb1 = b2, b3 = −2 andb4 = 2 which means that this transition is performed through
a two-dimensional surfaceF2. It is obvious thatF2 ⊂ F1. On the other hand, the transition

[1,2,0,1] → [1,0,4,0]

cannot happen. For example, we could have

[1(1),2(2),0(0),1(1)] → [1(1),2(2),2(0),0(0)] → [1(0),1(1),3(0),0(0)]
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following cases 2 and 9 of Table 2 and stop because we cannot apply case 9 again, since the pair of eigenvalues on
the unit circle, that corresponds toS1, has already been used in the previous step (rule (iv)). Also case 10 cannot be
applied sinceδl = 0 (rule (ii)).

From the above example it becomes clear how to use Tables 1 and 2 in order to find the possible transitions
between different stability types by taking or not into account the possible arrangements of the eigenvalues related
to Um. Also the equations that define the transition hypersurface in theN -dimensional parameter spaceS are
obtained along with its dimensionality.

4. Cases of definite number of degrees of freedom

We apply the results of the previous sections in some particular cases, namely to Hamiltonian systems with two,
three and four degrees of freedom. Although the stability properties of Hamiltonian systems with two and three
degrees of freedom are well known [8–10] we include a brief treatment of these cases for completeness sake and in
order to illustrate the use of the terminology of the different stability types introduced in Section 3.1. In addition,
these well-known cases give us a good opportunity to check the information provided in Tables 1 and 2. On the
other hand, the study of systems with four degrees of freedom is far from considered complete. So we do a detailed
study of all the possible stability types and the transitions between them.

4.1. The case of two degrees of freedom

In the case of a Hamiltonian system with two degrees of freedom we haveN + 1 = 2 so the characteristic
polynomial (13) becomes

P(λ) = λ2 − A0λ+ 1, (29)

where the coefficientA0 is the trace of the monodromy matrixL

A0 = Tr L. (30)

So, there exists only one stability indexb1, hence the reduced characteristic polynomial (15) is simply

Q(b) = b − A′
1, (31)

where

A′
1 = b1 = A0, (32)

as we derive from Eqs. (16) and (17), forN = 1. So the stability type of the orbit depends on the value ofA0. In
particular we have only two types of stability, in agreement to Eq. (20) forN = 1. If |b1| = |A0| < 2 the orbit is
stable (S1) and if |A0| > 2 unstable (U1). The usual notation for these two stability types areS for stable andU for
unstable [36–39] which does not practically differ from our notation.

The parameter spaceS, where the possible stability types are defined is one-dimensional since the only coordinate
is A0. In this space we have three different stability regions, in agreement to Eq. (21) forN = 1. The transition
boundaries correspond to the constraintsb1 = −2 andb1 = 2, so that the possible regions are: (a)A0 < −2, which
corresponds to theU1,0 stability type, (b)−2< A0 < 2, which corresponds to theS1 stability type, and (c)A0 > 2
which corresponds to theU0,1 stability type. The only possible transition isS → U (U1,0 orU0,1) and vice versa,
which corresponds to case 1 of Table 1 sinceδm · δn ≤ 0. Sinceδl = 0 these transitions are performed when the
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pointA, that represents the stability state of the periodic orbit, passes through the pointsA0 = ±2 in agreement
to case 1 of Table 1. The transitionU1,0 → U0,1 is not possible since the two regions inS are not neighboring.
Also this transition does not correspond to any of the cases listed in Table 2, since case 9 which resembles to the
transitionU1,0 → U0,1 is valid forn ≥ 1.

4.2. The case of three degrees of freedom

In this caseN + 1 = 3 so the characteristic polynomial (13) is

P(λ) = λ4 − A1λ
3 + A0λ

2 − A1λ+ 1. (33)

The coefficientA0 andA1 are related to the elements of the monodromy matrixL through the relations

A0 =
∑
i<j

∣∣∣∣Lii Lij

Lji Ljj

∣∣∣∣ , A1 = Tr L. (34)

The two stability indicesb1, b2 are roots of the reduced characteristic polynomial (15)

Q(b) = b2 − A′
1b + A′

2 = 0. (35)

The coefficients of the two polynomials are related through

A′
1 = b1 + b2 = A1, A′

2 = b1b2 = A0 − 2, (36)

as we derive from Eqs. (16) and (17) forN = 2.
The parameter spaceS where the possible stability types are defined, is two-dimensional with coordinates the

coefficientsA0 andA1. The transition boundaries between the different stability regions inS are given by substituting
b = ±2 in Eq. (35) and using Eq. (36), which yields the lines

b = +2 ⇒ A0 = 2A1 − 2, b = −2 ⇒ A0 = −2A1 − 2 (37)

and by forcingb1 = b2 in Eq. (36) or equivalently putting the discriminant of Eq. (35) equal to zero, which yields
the curve

A0 = 1
4A

2
1 + 2. (38)

These boundaries create seven regions of different stability types in agreement to Eq. (21) forN = 2. These regions
are seen in Fig. 4.

We remark that the above analysis was performed by Broucke [9] in his work on the elliptic restricted three-body
problem, where he introduced a notation different to ours for the possible stability types. He named even–even
instability the typeU0,2, even–odd instability the typeU1,1, odd–odd instability the typeU2,0, even–semi-instability
the typeS1U0,1 and odd–semi-instability the typeS1U1,0, while he named stable theS2 type and complex unstable
the∆1 type. We underline the fact that Broucke gave different names for all the regions seen in Fig. 4 taking into
account the different configuration of the eigenvalues on the real axis. In a similar approach Dullin and Meiss [40]
named theS1 type elliptic denoting it as “E”, theU0,1 type hyperbolic denoting it as “H”, theU1,0 type inverse
hyperbolic denoting it as “I” and the∆1 type complex denoting it as “CQ”. Using the above notation they denoted
the seven different stability types of a four-dimensional symplectic map as EE (S2), EH (S1U0,1), EI (S1U1,0), II
(U2,0), HI (U1,1), HH (U0,2) and CQ (∆1).

On the other hand, most authors do not take into account the different arrangements of the eigenvalues on the
real axis, referring only to four different cases in agreement to Eq. (20) forN = 2 [13–30]. Usually the stable



Ch. Skokos / Physica D 159 (2001) 155–179 171

Fig. 4. The parameter spaceS of a Hamiltonian system with three degrees of freedom.A0 andA1 are the coefficients of the characteristic
polynomial. The boundaries of the different stability regions are the linesA0 = 2A1 − 2,A0 = −2A1 − 2, which correspond to one stability
index being equal to 2 and−2, respectively, and the lineA0 = (A2

1/4)+ 2 which corresponds to two stability indices being equal to each other.
On every stability region the corresponding stability type is marked.

case is denoted byS and the complex unstable case by∆, similar to ourS2 and∆1 notations. The simple unstable
case (U ) corresponds toS1U1 and in particular to casesS1U1,0 andS1U0,1, while the double unstable case (DU)
corresponds toU2 and in particular to casesU2,0, U1,1 andU0,2 [18,19,21,22,28,29]. Some authors follow the
above distinction of stability types using sometimes different terminology. As an example we refer to the papers of
Vrahatis et al. [23,24] where the authors name as elliptic–elliptic (EE) the stable case, elliptic–hyperbolic (EH) the
caseU , hyperbolic–hyperbolic (HH) the DU case and complex unstable (CU) the∆ case.

Although our terminology may seem a little heavy for the cases of two and three degrees of freedom, in comparison
to the already used terminology, it is perfectly suited for systems with many degrees of freedom, since it gives in a
very clear way all the information needed for the configuration of the eigenvalues on the complex plane.

4.3. Complete study of the four degrees of freedom case

We now continue with the main concept of this section, which is to find the stability regions in the three-dimensional
parameter spaceS, of a four degrees of freedom Hamiltonian system. In this case we haveN = 3 and the charac-
teristic polynomial (13) is

P(λ) = λ6 − A2λ
5 + A1λ

4 − A0λ
3 + A1λ

2 − A2λ+ 1, (39)

where the coefficientsA0, A1, A2 are related to the elements of the monodromy matrixL through

A0 =
∑
i<j<k

∣∣∣∣∣∣∣∣
Lii Lij Lik

Lji Ljj Ljk

Lki Lkj Lkk

∣∣∣∣∣∣∣∣
, A1 =

∑
i<j

∣∣∣∣∣
Lii Lij

Lji Ljj

∣∣∣∣∣ , A2 = Tr L. (40)
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The three stability indicesb1, b2, b3 are roots of the reduced characteristic polynomial (15)

Q(b) = b3 − A′
1b

2 + A′
2b − A′

3 = 0. (41)

Using Eqs. (16) and (17) forN = 3 and by denotingA2 ≡ A, A1 ≡ B, A0 ≡ C for simplicity, we get

A=A′
1 = b1 + b2 + b3, B = A′

2 + 3 = b1b2 + b1b3 + b2b3 + 3,

C =A′
3 + 2A = b1b2b3 + 2(b1 + b2 + b3). (42)

The discriminant ofQ(b) is

∆ = q2 + 4p3, (43)

where

q = − 2
27A

3 + 1
3A(B − 3)− C + 2A, p = 1

3(B − 3)− 1
9A

2. (44)

The parameter spaceS where the possible stability types are defined is the three-dimensional space(A,B,C).
The regions of the possible stability types inS, are defined by the transition boundaries that correspond to the
following constraints:

(i) One stability index is equal to 2. The corresponding boundary is planep1 shown in Fig. 5(a). The equation of
this plane is obtained by puttingb = +2 in Eq. (41) and using Eq. (42)

p1 : C = 2(1 − A+ B). (45)

By puttingb = +2 in Eq. (42) we get the parametric equations of planep1:

p1 : A= b1 + b2 + 2, B = b1b2 + 2(b1 + b2)+ 3,

C = 2b1b2 + 2(b1 + b2 + 2), with b1, b2 ∈ R. (46)

(ii) One stability index is equal to−2. The boundary surface is the planep2 shown in Fig. 5(b). This plane is
defined by the following equations:

p2 : C = −2(1 + A+ B), (47)

or

p2 : A= b1 + b2 − 2, B = b1b2 − 2(b1 + b2)+ 3,

C = −2b1b2 + 2(b1 + b2 − 2), with b1, b2 ∈ R. (48)

(iii) At least two stability indices are equal to each other. This condition is equivalent to the discriminant∆ (Eq. (43))
being equal to zero. The corresponding boundary surfacep∆ is the two-sheeted surface shown in Fig. 5(c).
The upper sheet in Fig. 5(c) is denoted asp3 and the lower sheet asp4. The equations of the two sheets are
obtained by putting∆ = 0 in Eq. (43) and using Eqs. (44). So we get

p3, p4 : C = − 2
27A

3 + 1
3A(B − 3)+ 2A± 2

√
−

[
1
3(B − 3)− 1

9A
2
]3
, (49)

with “ +” corresponding top3 and “−” to p4. Equivalently the parametric equations of the whole surface are
obtained by puttingb1 = b2 to Eq. (42):

p∆ : A = 2b1 + b3, B = b2
1 + 2b1b3 + 3, C = b2

1b3 + 4b1 + 2b3, with b1, b3 ∈ R. (50)
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Fig. 5. The boundaries of all the possible stability regions in the parameter spaceS of a Hamiltonian system with four degrees of freedom.
A, B, C are the coefficients of the corresponding characteristic polynomial. The constraintb = +2 corresponds to the planep1 (a), while the
constraintb = −2 to the planep2 (b). The equality of at least two stability indices corresponds to the two-sheeted surfacep∆ in (c) composed of
thep3 andp4 surfaces. In (c) the regions where the discriminant∆ of the reduced characteristic polynomial is positive and negative are marked.

This surface divides the parameter spaceS in the two regions shown in Fig. 5(c). In the region seen in Fig. 5(c)
on the left side ofp∆, the stability indices are three distinct real numbers (∆ < 0), while in the region seen
on the right side ofp∆, we have one real stability index with the other two indices being complex conjugate
numbers (∆ > 0). On the surfacep∆ (∆ = 0) the stability indices are real with at least two of them equal
to each other. Along the curve where the two sheetsp3 andp4 join the three stability indices are real and
equal.

The equations of the intersection curves between the above surfaces are found by substituting the constraints on
the stability indices, that every surface satisfies, to Eqs. (42). For example, the equation of the line of intersection
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of the two planesp1 andp2 is found by puttingb1 = 2 andb2 = −2 in Eqs. (42). This substitution gives the
parametric equation of the line:

p12 : (A,B,C) = (ρ,−1,−2ρ), ρ ∈ R. (51)

The other curves of intersection are found in a similar way. Having in mind that the two subscripts denote the
number of the surfaces that intersect andρ ∈ R we get

p13 : (A,B,C) = (4 + ρ,4ρ + 7,6ρ + 8), (52)

p14 : (A,B,C) = (2 + 2ρ, ρ2 + 4ρ + 3,2ρ2 + 4ρ + 4), (53)

p23 : (A,B,C) = (−2 + 2ρ, ρ2 − 4ρ + 3,−2ρ2 + 4ρ − 4), (54)

p24 : (A,B,C) = (ρ − 4,7 − 4ρ,6ρ − 8), (55)

p34 : (A,B,C) =
(
ρ, 1

3ρ
2 + 3, 1

27ρ
3 + 2ρ

)
, (56)

The points of intersection of the above curves are

Q1 = (2,−1,−4), Q2 = (−2,−1,4), P1 = (6,15,20), P2 = (−6,15,−20). (57)

In particular, curvesp12,p13,p23 intersect atQ1, curvesp12,p14,p24 intersect atQ2, curvesp13,p14,p34 intersect
atP1 and curvesp23, p24, p34 intersect atP2. At pointQ1 the values of the stability indices areb1 = 2, b2 = 2,
b3 = −2, while at pointQ2 they areb1 = 2, b2 = −2, b3 = −2, at pointP1 they areb1 = 2, b2 = 2, b3 = 2 and
at pointP2 they areb1 = −2, b2 = −2, b3 = −2.

The surfacep∆ is tangent to planep1 along the linep13, while it intersects it along the curvep14. In Fig. 6(a)
the planep1 and the lower sheetp4 of p∆ are plotted. On planep1 the curvesp13 andp14 are shown along with
the pointP1 at which the two curves become tangent. The sheetp3 is tangent to planep1 along the section of line
p13 that corresponds toρ < 2 in Eq. (52), and the sheetp4 is tangent to planep1 along the section ofp13 with
ρ > 2, whileρ = 2 corresponds to pointP1. The sheetp4 intersects planep1 along the section of curvep14 that
corresponds toρ < 2 in Eq. (53). The section ofp14 with ρ > 2 corresponds to the intersection of the planep1

with the sheetp3, while ρ = 2 corresponds to pointP1.
In a similar way, surfacep∆ is tangent to planep2 along the linep24, while it intersects it along the curve

p23. In Fig. 6(b) the planep2 and the lower sheetp4 of p∆ are plotted. On planep2 the curvesp23 and
p24 are shown along with the pointP2 at which the two curves become tangent. The sheetp3 is tangent to
planep2 along the section of linep24 that corresponds toρ < −2 in Eq. (55), and the sheetp4 is tangent
to planep2 along the section ofp24 with ρ > −2, while ρ = −2 corresponds to pointP2. The sheetp4

intersects planep2 along the section of curvep23 that corresponds toρ < −2 in Eq. (54), while sheetp3 in-
tersects planep2 along the section ofp24 for ρ > −2. The valueρ = −2 in Eq. (54) corresponds to point
P2.

The transition boundariesp1, p2 and p∆ create 13 regions of different stability types, in agreement to
Eq. (21) forN = 3. These regions are shown in Fig. 7. Fig. 7(a) is produced by the superposition of the three
frames seen in Fig. 5. In Fig. 7(a) the regions of eight stability types are shown, in particular the regions of the
stability types:S1U2,0, S2U1,0, U1,0∆1, U1,2, S1U1,1, S2U0,1, S1U0,2 andS1∆1. In Fig. 7(b) the same portion of
the parameter spaceS to the one shown in Fig. 7(a), is seen from a different point of view so that the regions of
the stability typesU2,1 andU0,1∆1 are also visible. We remark that new types of instabilities are introduced in
Hamiltonian systems with four degrees of freedom and in particular the typesS1∆1, U1,0∆1 andU0,1∆1 where
we have the coexistence of complex instability with stable and unstable configuration. The regions ofU3,0 and
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Fig. 6. Intersections and tangencies of the planesp1 andp2 with the surfacep∆ in the three-dimensional parameter spaceS with coordinates
the coefficientsA, B, C of the characteristic polynomial. (a) The planep1 and the lower sheetp4 of p∆. The surfacep∆ is tangent to plane
p1 along the linep13. In particular sheetp3 is tangent to planep1 along the section of linep13 starting from pointP1 and towards smaller
values ofA (ρ < 2 in Eq. (52)), while at the rest part ofp13 (ρ > 2 in Eq. (52))p4 is tangent top1. The surfacep∆ intersects the plane
p1 along the curvep14. In particular sheetp4 intersectsp1 along the section of curvep14 starting from pointP1 and towards smaller values
of A (ρ < 2 in Eq. (53)) and sheetp3 intersectsp1 along the rest part ofp14 (ρ > 2 in Eq. (53)). (b) The planep2 and the lower sheet
p4 of p∆. The surfacep∆ is tangent to planep2 along the linep24. In particular sheetp3 is tangent top2 along the section ofp24 starting
from pointP2 and towards smaller values ofA (ρ < −2 in Eq. (55)), while at the rest part ofp24 (ρ > −2 in Eq. (55))p4 is tangent to
p2. The surfacep∆ intersects the planep2 along the curvep23. In particular sheetp4 intersectsp2 along the section of curvep23 starting
from point P2 and towards smaller values ofA (ρ < −2 in Eq. (54)) and sheetp3 intersectsp2 along the rest part ofp23 (ρ > −2 in
Eq. (54)).

U0,3 are marked in Fig. 7(c). The region that corresponds to the stability typeU3,0 is located over the planep2 and
below thep∆ surface, while the region ofU0,3 is located below the planep1 and over the surfacep∆. The boundary
of the region that corresponds to the stability typeS3 is a rather complicated surface formed by the intersecting
surfacesp1, p2 andp∆ and it is shown in Fig. 7(d).

All the possible direct transitions between the different stability types, as well as the dimension of the cor-
responding transition boundary are reported in Table 3. The data of Table 3 can be found by using the infor-
mation provided in Table 2 or by examining the arrangement of the various stability regions seen in
Fig. 7.

From the data of Table 3 we see that certain transitions are not possible. For example, the transitionS1U2,0 →
S1U0,2 cannot happen, since the corresponding regions inS are not neighboring as seen in Fig. 7(a) and (b).
Some transitions are possible when very specific conditions are satisfied, since they correspond to the crossing of a
particular point inS, like the transitionS3 → U3,0 which is performed through pointP2. On the other hand, other
transitions are performed by the crossing of certain curves, like the transitionS2U0,1 → U1,2 which is performed
by the crossing of linep12 as seen in Fig. 7(a), or by the crossing of a surface inS, like for example the transition
S2U0,1 → S1U0,2 since the two regions are separated by planep1 as seen in Fig. 7(a). The region that corresponds
to theS3 type is directly connected to all other regions. Thus, the direct transition from the stable caseS3 to any
unstable type is possible.
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Fig. 7. The regions of the 13 possible stability types of a Hamiltonian system with four degrees of freedom, in the three-dimensional parameter
spaceS with coordinates the coefficientsA,B,C of the characteristic polynomial. (a) The regions of the stability typesS1U2,0, S2U1,0,U1,0∆1,
U1,2, S1U1,1, S2U0,1, S1U0,2 andS1∆1. The portion of the parameter spaceS is the same to the one seen in Fig. 5, using also the same point
of view. So the regions of the different stability types are produced by the superposition of the three frames of Fig. 5. (b) The same portion of
the parameter spaceS to the one shown in frame (a), seen from a different point of view so that the regions ofU2,1 andU0,1∆1 are also visible.
The planesp1, p2 and the surfacesp3, p4 are also marked. (c) A larger portion of the parameter spaceS compared to frames (a) and (b) (same
portion to the one shown in Fig. 6 seen from the same point of view), where the spear-like regions ofU3,0 andU0,3 are marked. The region
of U3,0 is located over the planep2 and below surfacep∆. It is confined between the section ofp4 located over the planep2 and the section
of sheetp3 up to the linep24 seen in Fig. 6(b), on whichp3 is tangent top2. The boundary ofU3,0 on planep2 is the curvilinear triangular
region formed by pointP2 and the sections ofp24 andp23 marked byρ < −2 in Fig. 6(b). The region ofU0,3 is located below the planep1 and
over the surfacep∆. The boundary ofU0,3 on planep1 is the curvilinear triangular region formed by pointP1 and the sections ofp13 andp14

marked byρ > 2 in Fig. 6(a). (d) The stability regionS3 is the one marked with bold lines. The region is confined by the planesp1, p2 and the
sheetsp3, p4. The sheetp3 is not plotted. The boundary ofS3 onp3 is the curvilinear triangleP1Q1P2 with sides the sections ofp13, p23 and
p34 marked by bold lines. The boundary ofS3 onp4 is the curvilinear triangleP1Q2P2 with sides the sections ofp14, p24 andp34 marked by
bold lines. The boundary ofS3 onp1 is the curvilinear triangleP1Q1Q2 with sides the sections ofp12, p13 andp14 marked by bold lines. The
boundary ofS3 onp2 is the curvilinear triangleP2Q1Q2 with sides the sections ofp12, p23 andp24 marked by bold lines.
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Table 3
The possible direct transitions between the 13 different stability types of a periodic orbit of a Hamiltonian system with four degrees of freedom.
The 13 stability types are listed in the first column and the first row of the table. If the direct transition between two stability types defined by
the column and the row of a cell is possible then the dimension of the corresponding transition boundary is reported in the cell: 2 for a surface,
1 for a curve and 0 for a point. If a particular transition is not possible the corresponding cell contains the mark “–”. The cells of the diagonal
are empty since they do not represent any transition

Stability types S3 S2U1,0 S2U0,1 S1U2,0 S1U1,1 S1U0,2 S1∆1 U3,0 U2,1 U1,2 U0,3 U1,0∆1 U0,1∆1

S3 2 2 1 1 1 2 0 0 0 0 1 1
S2U1,0 2 1 2 2 0 1 1 1 1 – 2 0
S2U0,1 2 1 0 2 2 1 – 1 1 1 0 2
S1U2,0 1 2 0 1 – 2 2 2 – – 1 1
S1U1,1 1 2 2 1 1 0 – 2 2 – 1 1
S1U0,2 1 0 2 – 1 2 – – 2 2 1 1
S1∆1 2 1 1 2 0 2 1 1 1 1 2 2
U3,0 0 1 – 2 – – 1 – – – 2 –
U2,1 0 1 1 2 2 – 1 – – – – 2
U1,2 0 1 1 – 2 2 1 – – – 2 –
U0,3 0 – 1 – – 2 1 – – – – 2
U1,0∆1 1 2 0 1 1 1 2 2 – 2 – –
U0,1∆1 1 0 2 1 1 1 2 – 2 – 2 –

5. Summary

We considered the problem of the stability of periodic orbits of autonomous Hamiltonian systems withN + 1
degrees of freedom or equivalently of 2N -dimensional symplectic maps, whereN is an integer withN ≥ 1.
The stability of a periodic orbit is defined by the eigenvalues of the corresponding monodromy matrix, which
are given as roots of the characteristic polynomial (13), or equivalently by the values of the stability indices (14)
which are provided as roots of the reduced characteristic polynomial (15). The introduction of the stability indices
simplifies the mathematical formalism, since the order of the reduced characteristic polynomial is half the order of
the characteristic polynomial. The coefficients of the reduced characteristic polynomial are related to the stability
indices and to the coefficients of the characteristic polynomial through Eqs. (16) and (17), respectively.

The results of our study can be summarized as follows:

(i) We introduce a new terminology for the different stability types that a periodic orbit of a Hamiltonian system
withN+1 degrees can exhibit. That terminology is perfectly suited for systems with many degrees of freedom,
since it provides in a clear way the configuration of the eigenvalues of the monodromy matrix on the complex
plane. The general form of a stability type is

SnUm∆l, with n+m+ 2l = N,
which means thatn couples of eigenvalues are on the unit circle,m couples are on the real axis andl quartets
are on the complex plane but not on the unit circle and not on the real axis.

(ii) All the possibleUm types are not identical, since a pair of negative real eigenvalues cannot become positive
under a continuous change of a parameter of the system. So, by taking into account the different configurations
of the eigenvalues that correspond to theUm case, the introduced notation becomes

SnUm1,m2∆l, with m1 +m2 = m,
which means that there existm1 real negative pairs of eigenvalues andm2 real positive pairs of eigenvalues.
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(iii) The stability type of a periodic orbit is represented by a point in theN -dimensional parameter spaceS with
coordinates the coefficients of the characteristic polynomial. So different stability types correspond to different
regions of spaceS. The number of the different regions is given by Eq. (21).

(iv) We register all the possible direct transitions between different stability types. The dimensionD of the hyper-
surface inS, which corresponds to a certain transition is an indicator of how probable this transition is. The
constraints on the stability indices that the transition

SnUm∆l → Sn+δnUm+δm∆l+δl

introduces and the dimensionD of the corresponding transition hypersurface inS are provided in Table 1.
In this table the different arrangements of the eigenvalues for theUm andUm+δm types have not been taken
into account. So the transitions registered in Table 1 can happen in the sense that there exists at least one
configuration of the eigenvalues, compatible to theUm andUm+δm types, that allows the transition to occur.
Taking into account the possible different arrangements of the eigenvalues for theUm type and using the
notation

SnUm1,m2∆l ≡ [n,m1,m2, l],

the possible direct transitions and the dimension of the corresponding transition hypersurface inS, are found
by using repetitively the transition cases listed in Table 2, without using the same pair or quartet of eigenvalues
twice. An explicit algorithm for determining whether a transition is possible and if so, finding the dimension
of the corresponding hypersurface inS is provided in Section 3.3.2.

(v) We applied the new terminology of the stability types to the well-known cases of Hamiltonian systems with
two and three degrees of freedom, referring also to the various direct transitions between different stability
types as they arise from Tables 1 and 2. We also studied in detail the three-dimensional parameter spaceS of
a Hamiltonian system with four degrees of freedom or equivalently of a six-dimensional symplectic map. By
providing the equations of the boundary surfaces of the different stability regions, we define the regions inS
that correspond to all the possible instabilities not limiting ourselves in studying only the stable caseS3. The
arrangement of the various regions define the possible direct transitions between different stability types, in
agreement to the information provided in Tables 1 and 2. All the direct transitions as well as the dimension of
the corresponding transition boundary are reported in Table 3.
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